CSpace  > 应用数学研究所
Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data
Wang, Yong1,2; Zhang, Xiang-Sun2; Xia, Yu1
2009-10-01
发表期刊NUCLEIC ACIDS RESEARCH
ISSN0305-1048
卷号37期号:18页码:5943-5958
摘要Transcriptional cooperativity among several transcription factors (TFs) is believed to be the main mechanism of complexity and precision in transcriptional regulatory programs. Here, we present a Bayesian network framework to reconstruct a high-confidence whole-genome map of transcriptional cooperativity in Saccharomyces cerevisiae by integrating a comprehensive list of 15 genomic features. We design a Bayesian network structure to capture the dominant correlations among features and TF cooperativity, and introduce a supervised learning framework with a well-constructed gold-standard dataset. This framework allows us to assess the predictive power of each genomic feature, validate the superior performance of our Bayesian network compared to alternative methods, and integrate genomic features for optimal TF cooperativity prediction. Data integration reveals 159 high-confidence predicted cooperative relationships among 105 TFs, most of which are subsequently validated by literature search. The existing and predicted transcriptional cooperativities can be grouped into three categories based on the combination patterns of the genomic features, providing further biological insights into the different types of TF cooperativity. Our methodology is the first supervised learning approach for predicting transcriptional cooperativity, compares favorably to alternative unsupervised methodologies, and can be applied to other genomic data integration tasks where high-quality gold-standard positive data are scarce.
DOI10.1093/nar/gkp625
语种英语
资助项目National Natural Science Foundation of China[10801131] ; National Natural Science Foundation of China[10631070] ; National Natural Science Foundation of China[60873205] ; Chinese Academy of Sciences[kjcs-yw-s7] ; National Basic Research Program[2006CB503900] ; PhRMA Foundation
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemistry & Molecular Biology
WOS记录号WOS:000271109300008
出版者OXFORD UNIV PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/9232
专题应用数学研究所
通讯作者Xia, Yu
作者单位1.Boston Univ, Dept Chem, Bioinformat Program, Boston, MA 02215 USA
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yong,Zhang, Xiang-Sun,Xia, Yu. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data[J]. NUCLEIC ACIDS RESEARCH,2009,37(18):5943-5958.
APA Wang, Yong,Zhang, Xiang-Sun,&Xia, Yu.(2009).Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.NUCLEIC ACIDS RESEARCH,37(18),5943-5958.
MLA Wang, Yong,et al."Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data".NUCLEIC ACIDS RESEARCH 37.18(2009):5943-5958.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yong]的文章
[Zhang, Xiang-Sun]的文章
[Xia, Yu]的文章
百度学术
百度学术中相似的文章
[Wang, Yong]的文章
[Zhang, Xiang-Sun]的文章
[Xia, Yu]的文章
必应学术
必应学术中相似的文章
[Wang, Yong]的文章
[Zhang, Xiang-Sun]的文章
[Xia, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。