CSpace  > 应用数学研究所
A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration
Zhang, Lihua1,2; Zhang, Shihua1,2
2020-09-01
发表期刊IEEE TRANSACTIONS ON FUZZY SYSTEMS
ISSN1063-6706
卷号28期号:9页码:1971-1983
摘要Nonnegative matrix factorization (NMF) is a powerful tool in data exploratory analysis by discovering hidden features and part-based patterns from high-dimensional data. NMF and its variants have been successfully applied into diverse fields such as pattern recognition, signal processing, data mining, bioinformatics, and so on. Recently, NMF has been extended to analyze multiple matrices simultaneously. However, a general framework and its systematic algorithmic exploration are still lacking. In this paper, we first introduce a sparse multiple relationship data regularized joint matrix factorization (JMF) framework and two adapted prediction models for pattern recognition and data integration. Next, we present four update algorithms to solve this framework in a very comprehensive manner. The merits and demerits of these algorithms are systematically explored. Furthermore, extensive computational experiments using both synthetic data and real data demonstrate the effectiveness of JMF framework and related algorithms on pattern recognition and data mining.
关键词Sparse matrices Pattern recognition Data integration Prediction algorithms Data models Matrix decomposition Signal processing algorithms Bioinformatics data integration network-regularized constraint nonnegative matrix factorization (NMF) pattern recognition
DOI10.1109/TFUZZ.2019.2928518
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11661141019] ; National Natural Science Foundation of China[61621003] ; National Natural Science Foundation of China[61422309] ; National Natural Science Foundation of China[61379092] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB13040600] ; National Ten Thousand Talent Program for Young Top-Notch Talents ; Key Research Program of the Chinese Academy of Sciences[KFZD-SW-219] ; National Key Research and Development Program of China[2017YFC0908405] ; CASFrontier Science ResearchKey Project for TopYoung Scientist[QYZDB-SSW-SYS008]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000566682000007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/52176
专题应用数学研究所
通讯作者Zhang, Shihua
作者单位1.Chinese Acad Sci, NCMIS, CEMS, RCSDS,Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Lihua,Zhang, Shihua. A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration[J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2020,28(9):1971-1983.
APA Zhang, Lihua,&Zhang, Shihua.(2020).A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration.IEEE TRANSACTIONS ON FUZZY SYSTEMS,28(9),1971-1983.
MLA Zhang, Lihua,et al."A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration".IEEE TRANSACTIONS ON FUZZY SYSTEMS 28.9(2020):1971-1983.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Lihua]的文章
[Zhang, Shihua]的文章
百度学术
百度学术中相似的文章
[Zhang, Lihua]的文章
[Zhang, Shihua]的文章
必应学术
必应学术中相似的文章
[Zhang, Lihua]的文章
[Zhang, Shihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。