KMS Of Academy of mathematics and systems sciences, CAS
A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration | |
Zhang, Lihua1,2; Zhang, Shihua1,2![]() | |
2020-09-01 | |
发表期刊 | IEEE TRANSACTIONS ON FUZZY SYSTEMS
![]() |
ISSN | 1063-6706 |
卷号 | 28期号:9页码:1971-1983 |
摘要 | Nonnegative matrix factorization (NMF) is a powerful tool in data exploratory analysis by discovering hidden features and part-based patterns from high-dimensional data. NMF and its variants have been successfully applied into diverse fields such as pattern recognition, signal processing, data mining, bioinformatics, and so on. Recently, NMF has been extended to analyze multiple matrices simultaneously. However, a general framework and its systematic algorithmic exploration are still lacking. In this paper, we first introduce a sparse multiple relationship data regularized joint matrix factorization (JMF) framework and two adapted prediction models for pattern recognition and data integration. Next, we present four update algorithms to solve this framework in a very comprehensive manner. The merits and demerits of these algorithms are systematically explored. Furthermore, extensive computational experiments using both synthetic data and real data demonstrate the effectiveness of JMF framework and related algorithms on pattern recognition and data mining. |
关键词 | Sparse matrices Pattern recognition Data integration Prediction algorithms Data models Matrix decomposition Signal processing algorithms Bioinformatics data integration network-regularized constraint nonnegative matrix factorization (NMF) pattern recognition |
DOI | 10.1109/TFUZZ.2019.2928518 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[11661141019] ; National Natural Science Foundation of China[61621003] ; National Natural Science Foundation of China[61422309] ; National Natural Science Foundation of China[61379092] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB13040600] ; National Ten Thousand Talent Program for Young Top-Notch Talents ; Key Research Program of the Chinese Academy of Sciences[KFZD-SW-219] ; National Key Research and Development Program of China[2017YFC0908405] ; CASFrontier Science ResearchKey Project for TopYoung Scientist[QYZDB-SSW-SYS008] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000566682000007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/52176 |
专题 | 应用数学研究所 |
通讯作者 | Zhang, Shihua |
作者单位 | 1.Chinese Acad Sci, NCMIS, CEMS, RCSDS,Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Lihua,Zhang, Shihua. A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration[J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2020,28(9):1971-1983. |
APA | Zhang, Lihua,&Zhang, Shihua.(2020).A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration.IEEE TRANSACTIONS ON FUZZY SYSTEMS,28(9),1971-1983. |
MLA | Zhang, Lihua,et al."A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration".IEEE TRANSACTIONS ON FUZZY SYSTEMS 28.9(2020):1971-1983. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Lihua]的文章 |
[Zhang, Shihua]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Lihua]的文章 |
[Zhang, Shihua]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Lihua]的文章 |
[Zhang, Shihua]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论