CSpace  > 应用数学研究所
Global linear and quadratic one-step smoothing newton method for P(0)-LCP
Zhang, LP; Zhang, XS
2003-04-01
发表期刊JOURNAL OF GLOBAL OPTIMIZATION
ISSN0925-5001
卷号25期号:4页码:363-376
摘要We propose a new smoothing Newton method for solving the P(0)-matrix linear complementarity problem (P(0)-LCP) based on CHKS smoothing function. Our algorithm solves only one linear system of equations and performs only one line search per iteration. It is shown to converge to a P(0)-LCP solution globally linearly and locally quadratically without the strict complementarity assumption at the solution. To the best of author's knowledge, this is the first one-step smoothing Newton method to possess both global linear and local quadratic convergence. Preliminary numerical results indicate that the proposed algorithm is promising.
关键词P(0)-matrix linear complementarity problem smoothing Newton method global linear convergence quadratic convergence
语种英语
WOS研究方向Operations Research & Management Science ; Mathematics
WOS类目Operations Research & Management Science ; Mathematics, Applied
WOS记录号WOS:000181236800002
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/18335
专题应用数学研究所
通讯作者Zhang, LP
作者单位1.No Jiaotong Univ, Inst Syst Sci, Sch Traff & Transportat, Beijing 100044, Peoples R China
2.Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang, LP,Zhang, XS. Global linear and quadratic one-step smoothing newton method for P(0)-LCP[J]. JOURNAL OF GLOBAL OPTIMIZATION,2003,25(4):363-376.
APA Zhang, LP,&Zhang, XS.(2003).Global linear and quadratic one-step smoothing newton method for P(0)-LCP.JOURNAL OF GLOBAL OPTIMIZATION,25(4),363-376.
MLA Zhang, LP,et al."Global linear and quadratic one-step smoothing newton method for P(0)-LCP".JOURNAL OF GLOBAL OPTIMIZATION 25.4(2003):363-376.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, LP]的文章
[Zhang, XS]的文章
百度学术
百度学术中相似的文章
[Zhang, LP]的文章
[Zhang, XS]的文章
必应学术
必应学术中相似的文章
[Zhang, LP]的文章
[Zhang, XS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。