KMS Of Academy of mathematics and systems sciences, CAS
Geometric meshes in collocation methods for Volterra integral equations with proportional delays | |
Brunner, H; Hu, QUY; Lin, Q | |
2001-10-01 | |
发表期刊 | IMA JOURNAL OF NUMERICAL ANALYSIS
![]() |
ISSN | 0272-4979 |
卷号 | 21期号:4页码:783-798 |
摘要 | In this paper we analyse the local superconvergence properties of iterated piecewise polynomial collocation solutions for linear second-kind Volterra integral equations with (vanishing) proportional delays qt (0 < q < 1). It is shown that on suitable geometric meshes depending on q, collocation at the Gauss points leads to almost optimal superconvergence at the mesh points. This contrasts with collocation on uniform meshes where the problem regarding the attainable order of local superconvergence remains open. |
关键词 | delay integral equation geometric mesh collocation method iterated collocation solution superconvergence |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000171947000001 |
出版者 | OXFORD UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/16001 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Brunner, H |
作者单位 | 1.Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Brunner, H,Hu, QUY,Lin, Q. Geometric meshes in collocation methods for Volterra integral equations with proportional delays[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2001,21(4):783-798. |
APA | Brunner, H,Hu, QUY,&Lin, Q.(2001).Geometric meshes in collocation methods for Volterra integral equations with proportional delays.IMA JOURNAL OF NUMERICAL ANALYSIS,21(4),783-798. |
MLA | Brunner, H,et al."Geometric meshes in collocation methods for Volterra integral equations with proportional delays".IMA JOURNAL OF NUMERICAL ANALYSIS 21.4(2001):783-798. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论