×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
中国科学院数学与系统科学研究院机构知识库
KMS Of Academy of mathematics and systems sciences, CAS
Log In
Register
ALL
ORCID
Title
Creator
Date Issued
Subject Area
Keyword
Document Type
Source Publication
Date Accessioned
Indexed By
Publisher
Funding Project
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
Institue o... [5]
Authors
Tang Yifa [4]
Mao Shipen... [1]
Document Type
Journal ar... [6]
Date Issued
2019 [1]
2018 [4]
2017 [1]
Language
英语 [6]
Source Publication
ACTA MATHE... [1]
APPLIED MA... [1]
EAST ASIAN... [1]
INTERNATIO... [1]
JOURNAL OF... [1]
actamathem... [1]
More...
Funding Project
National N... [4]
National N... [2]
National N... [2]
Foundation... [1]
Key Scient... [1]
Major Stat... [1]
More...
Indexed By
Funding Organization
×
Knowledge Map
CSpace
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations
期刊论文
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 卷号: 9, 期号: 3, 页码: 538-557
Authors:
Huang, Jianfei
;
Arshad, Sadia
;
Jiao, Yandong
;
Tang, Yifa
Favorite
  |  
View/Download:125/0
  |  
Submit date:2020/01/10
Fractional diffusion-wave equation
nonlinear source
convolution quadrature
generating function
stability and convergence
Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes
期刊论文
APPLIED MATHEMATICS AND COMPUTATION, 2018, 卷号: 338, 页码: 290-304
Authors:
Shi, Z. G.
;
Zhao, Y. M.
;
Liu, F.
;
Wang, F. L.
;
Tang, Y. F.
Favorite
  |  
View/Download:156/0
  |  
Submit date:2018/10/07
Multi-term time fractional diffusion-wave equation
Nonconforming quasi-Wilson finite element
Crank-Nicolson scheme
Superclose and superconvergence
Anisotropic meshes
Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
期刊论文
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 卷号: 34, 期号: 4, 页码: 828-841
Authors:
Wei, Ya-bing
;
Zhao, Yan-min
;
Shi, Zheng-guang
;
Wang, Fen-ling
;
Tang, Yi-fa
Favorite
  |  
View/Download:165/0
  |  
Submit date:2018/11/16
multi-term time-fractional diffusion-wave equation
bilinear finite element method
Crank-Nicolson approximation
stability
convergence and superconvergence
High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes
期刊论文
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 卷号: 95, 期号: 1, 页码: 218-230
Authors:
Zhang, Y. D.
;
Zhao, Y. M.
;
Wang, F. L.
;
Tang, Y. F.
Favorite
  |  
View/Download:129/0
  |  
Submit date:2018/07/30
Time fractional diffusion-wave equation
finite element method
Crank-Nicolson scheme
stability
convergence and superconvergence
spatialhighaccuracyanalysisoffemfortwodimensionalmultitermtimefractionaldiffusionwaveequations
期刊论文
actamathematicaeapplicataesinica, 2018, 卷号: 34, 期号: 4, 页码: 828
Authors:
Wei Yabing
;
Zhao Yanmin
;
Shi Zhengguang
;
Wang Fenling
;
Tang Yifa
Favorite
  |  
View/Download:111/0
  |  
Submit date:2020/01/10
Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
期刊论文
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 卷号: 72, 期号: 3, 页码: 917-935
Authors:
Ren, Jincheng
;
Long, Xiaonian
;
Mao, Shipeng
;
Zhang, Jiwei
Favorite
  |  
View/Download:89/0
  |  
Submit date:2018/07/30
Fractional diffusion-wave equation
Finite element method
Fully discrete scheme
Error estimate