CSpace

Browse/Search Results:  1-10 of 170 Help

Selected(0)Clear Items/Page:    Sort:
On the initial-boundary value problem for the three-dimensional compressible viscoelastic fluids with the electrostatic effect 期刊论文
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 卷号: 316, 页码: 425-470
Authors:  Wang, Yong;  Shen, Rong;  Wu, Wenpei;  Zhang, Changjuan
Favorite  |  View/Download:18/0  |  Submit date:2023/02/07
Viscoelastic fluids  Initial-boundary value problems  Electrostatic effects  Exponential decay rates  
An optimal piecewise cubic nonconforming finite element scheme for the planar biharmonic equation on general triangulations 期刊论文
SCIENCE CHINA-MATHEMATICS, 2021, 页码: 24
Authors:  Zhang, Shuo
Favorite  |  View/Download:87/0  |  Submit date:2021/10/26
biharmonic equation  optimal cubic finite element scheme  general triangulation  discretized Stokes complex  discrete strengthened Miranda-Talenti estimate  
Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations 期刊论文
ADVANCES IN NONLINEAR ANALYSIS, 2021, 卷号: 10, 期号: 1, 页码: 1356-1383
Authors:  Wang, Yong;  Wu, Wenpei
Favorite  |  View/Download:75/0  |  Submit date:2021/10/26
Elastic Navier-Stokes-Poisson equations  Initial-boundary value problems  Global solution  Exponential decay  
An initial-boundary value problem for the general three-component nonlinear Schrodinger equations on a finite interval 期刊论文
IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 卷号: 86, 期号: 3, 页码: 427-489
Authors:  Yan, Zhenya
Favorite  |  View/Download:95/0  |  Submit date:2021/10/26
general three-component nonlinear Schrodinger equations  initial-boundary value problem  inverse scattering  Riemann-Hilbert problem  global relation  Dirichlet and Neumann problems  Gel'fand-Levitan-Marchenko representation  
Solving forward and inverse problems of the logarithmic nonlinear Schrodinger equation with PT-symmetric harmonic potential via deep learning 期刊论文
PHYSICS LETTERS A, 2021, 卷号: 387, 页码: 12
Authors:  Zhou, Zijian;  Yan, Zhenya
Favorite  |  View/Download:102/0  |  Submit date:2021/04/26
Logarithmic nonlinear Schrodinger equation  PT-symmetric potentials  Physics-informed neural networks  Deep learning  Data-driven discovery of LNLS equation  Data-driven solitons  
The interior inverse electromagnetic scattering for an inhomogeneous cavity 期刊论文
Inverse Problems, 2021, 卷号: 37, 期号: 2
Authors:  Zeng,Fang;  Meng,Shixu
Favorite  |  View/Download:100/0  |  Submit date:2021/04/26
interior inverse scattering  linear sampling method  exterior transmission problem  Maxwell's equations  cavity  
ON DISCRETE SHAPE GRADIENTS OF BOUNDARY TYPE FOR PDE-CONSTRAINED SHAPE OPTIMIZATION 期刊论文
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 卷号: 59, 期号: 3, 页码: 1510-1541
Authors:  Gong, Wei;  Zhu, Shengfeng
Favorite  |  View/Download:91/0  |  Submit date:2021/10/26
shape optimization  shape gradient  boundary formulation  boundary correction  a priori error estimate  finite element  
WELL-POSEDNESS AND THE MULTISCALE ALGORITHM FOR HETEROGENEOUS SCATTERING OF MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA 期刊论文
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 卷号: 18, 期号: 2, 页码: 235-264
Authors:  Zhang, Yongwei;  Cao, Liqun;  Shi, Dongyang
Favorite  |  View/Download:112/0  |  Submit date:2021/04/26
Maxwell's equations  dispersive medium  well-posedness  the multiscale asymptotic expansion  finite element method  
ASYMPTOTIC ANALYSIS OF NONLINEAR ROBIN-TYPE BOUNDARY VALUE PROBLEMS WITH SMALL PERIODIC STRUCTURE 期刊论文
MULTISCALE MODELING & SIMULATION, 2021, 卷号: 19, 期号: 2, 页码: 830-845
Authors:  Ye, Changqing;  Cui, Junzhi;  Dong, Hao
Favorite  |  View/Download:113/0  |  Submit date:2021/10/26
elliptic hemivariational inequality  homogenization  finite element method  error estimates  contact problems  Robin problems  
A novel method in determining a layered periodic structure 期刊论文
Boundary Value Problems, 2020, 卷号: 2020, 期号: 1
Authors:  Cui,Yanli;  Li,Xiliang;  Qu,Fenglong
Favorite  |  View/Download:102/0  |  Submit date:2021/01/14
Inverse scattering  Uniqueness  Lαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}_{\alpha }$\end{document} estimate  Periodic structures