KMS Of Academy of mathematics and systems sciences, CAS
New numerical methods for the coupled nonlinear Schrodinger equations | |
Xu, Qiu-bin1,2; Chang, Qian-shun2 | |
2010-04-01 | |
发表期刊 | ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
![]() |
ISSN | 0168-9673 |
卷号 | 26期号:2页码:205-218 |
摘要 | In this paper, three numerical schemes with high accuracy for the coupled Schrodinger equations are studied. The conservative properties of the schemes are obtained and the plane wave solution is analysised. The split step Runge-Kutta scheme is conditionally stable by linearized analyzed. The split step compact scheme and the split step spectral method are unconditionally stable. The trunction error of the schemes are discussed. The fusion of two solitions colliding with different beta is shown in the figures. The numerical experments demonstrate that our algorithms are effective and reliable. |
关键词 | Coupled nonlinear Schrodinger equation(CNLS) split step Runge-Kutta method compact scheme split step spectral method difference scheme |
DOI | 10.1007/s10255-007-7098-2 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000275746800003 |
出版者 | SPRINGER HEIDELBERG |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/9637 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Xu, Qiu-bin |
作者单位 | 1.Nanjing Audit Univ, Dept Appl Math, Nanjing 211815, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Qiu-bin,Chang, Qian-shun. New numerical methods for the coupled nonlinear Schrodinger equations[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2010,26(2):205-218. |
APA | Xu, Qiu-bin,&Chang, Qian-shun.(2010).New numerical methods for the coupled nonlinear Schrodinger equations.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,26(2),205-218. |
MLA | Xu, Qiu-bin,et al."New numerical methods for the coupled nonlinear Schrodinger equations".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 26.2(2010):205-218. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论