KMS Of Academy of mathematics and systems sciences, CAS
Formal Integrability Criteria for Nonlinear Partial Difference Equations | |
Xie, Zheng1,2; Li, Hongbo1,2![]() | |
2009-11-01 | |
发表期刊 | ACTA APPLICANDAE MATHEMATICAE
![]() |
ISSN | 0167-8019 |
卷号 | 108期号:2页码:279-297 |
摘要 | In recent years, there has been a substantial growth of interest in discrete differential geometry. Can results in formal differential geometry also be discretized for nonlinear partial difference equations? Using some techniques in exterior difference calculus, we investigate the geometric property of discrete Jet bundles. Further, we define the formal integrability and discrete Spencer cohomology for nonlinear partial difference equations, and give the formal integrability criteria. |
关键词 | Nonlinear difference equations Spencer cohomology Formal differential geometry Discrete differential geometry |
DOI | 10.1007/s10440-008-9312-5 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000270640500004 |
出版者 | SPRINGER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/9055 |
专题 | 系统科学研究所 |
通讯作者 | Xie, Zheng |
作者单位 | 1.Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China 2.Chinese Acad Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Zheng,Li, Hongbo. Formal Integrability Criteria for Nonlinear Partial Difference Equations[J]. ACTA APPLICANDAE MATHEMATICAE,2009,108(2):279-297. |
APA | Xie, Zheng,&Li, Hongbo.(2009).Formal Integrability Criteria for Nonlinear Partial Difference Equations.ACTA APPLICANDAE MATHEMATICAE,108(2),279-297. |
MLA | Xie, Zheng,et al."Formal Integrability Criteria for Nonlinear Partial Difference Equations".ACTA APPLICANDAE MATHEMATICAE 108.2(2009):279-297. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xie, Zheng]的文章 |
[Li, Hongbo]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xie, Zheng]的文章 |
[Li, Hongbo]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xie, Zheng]的文章 |
[Li, Hongbo]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论