KMS Of Academy of mathematics and systems sciences, CAS
Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions | |
Gao, Xuyan1; Ding, Juntang1,2; Guo, Bao-Zhu2,3![]() | |
2009 | |
发表期刊 | APPLICABLE ANALYSIS
![]() |
ISSN | 0003-6811 |
卷号 | 88期号:2页码:183-191 |
摘要 | Using the upper and lower solution techniques and Hopf's maximum principle, the sufficient conditions for the existence of blow-up positive solution and global positive solution are obtained for a class of quasilinear parabolic equations subject to Neumann boundary conditions. An upper bound for the 'blow-up time', an upper estimate of the 'blow-up rate', and an upper estimate of the global solution are also specified. |
关键词 | quasilinear parabolic equation blow-up solution global solution Neumann boundary conditions blow-up time |
DOI | 10.1080/00036810802713818 |
语种 | 英语 |
资助项目 | Mathematical Tianyuan Foundation of China[10726041] ; Natural Science Foundation of Shanxi Province[2006011001] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000266276800004 |
出版者 | TAYLOR & FRANCIS LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/8502 |
专题 | 系统科学研究所 |
通讯作者 | Ding, Juntang |
作者单位 | 1.Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China 2.Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Wits, Johannesburg, South Africa 3.Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Xuyan,Ding, Juntang,Guo, Bao-Zhu. Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions[J]. APPLICABLE ANALYSIS,2009,88(2):183-191. |
APA | Gao, Xuyan,Ding, Juntang,&Guo, Bao-Zhu.(2009).Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions.APPLICABLE ANALYSIS,88(2),183-191. |
MLA | Gao, Xuyan,et al."Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions".APPLICABLE ANALYSIS 88.2(2009):183-191. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论