CSpace
Improved AIC selection strategy for survival analysis
Liang, Hua1; Zou, Guohua1,2
2008-01-20
发表期刊COMPUTATIONAL STATISTICS & DATA ANALYSIS
ISSN0167-9473
卷号52期号:5页码:2538-2548
摘要In survival analysis, it is of interest to appropriately select significant predictors. In this paper, we extend the AIC(C) selection procedure of Hurvich and Tsai to survival models to improve the traditional AIC for small sample sizes. A theoretical verification under a special case of the exponential distribution is provided. Simulation studies illustrate that the proposed method substantially outperforms its counterpart: AIC, in small samples, and competes it in moderate and large samples. Two real data sets are also analyzed. (c) 2007 Elsevier B.V. All rights reserved.
关键词AIC BIC Kullback-Leibler information survival analysis
DOI10.1016/j.csda.2007.09.003
语种英语
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号WOS:000253178600019
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/6989
专题中国科学院数学与系统科学研究院
通讯作者Liang, Hua
作者单位1.Univ Rochester, Med Ctr, Dept Biostat & Comp Biol, Rochester, NY 14642 USA
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liang, Hua,Zou, Guohua. Improved AIC selection strategy for survival analysis[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2008,52(5):2538-2548.
APA Liang, Hua,&Zou, Guohua.(2008).Improved AIC selection strategy for survival analysis.COMPUTATIONAL STATISTICS & DATA ANALYSIS,52(5),2538-2548.
MLA Liang, Hua,et al."Improved AIC selection strategy for survival analysis".COMPUTATIONAL STATISTICS & DATA ANALYSIS 52.5(2008):2538-2548.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liang, Hua]的文章
[Zou, Guohua]的文章
百度学术
百度学术中相似的文章
[Liang, Hua]的文章
[Zou, Guohua]的文章
必应学术
必应学术中相似的文章
[Liang, Hua]的文章
[Zou, Guohua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。