CSpace
Dynamics on the number of prime divisors for additive arithmetic semigroups
Wang, Biao
2022-08-01
发表期刊FINITE FIELDS AND THEIR APPLICATIONS
ISSN1071-5797
卷号81页码:28
摘要In 2020, Bergelson and Richter gave a dynamical generalization of the classical Prime Number Theorem, which has been generalized by Loyd in a disjoint form with the ErdosKac Theorem. These generalizations reveal the rich ergodic properties of the number of prime divisors of integers. In this article, we show a new generalization of Bergelson and Richter's Theorem in a disjoint form with the distribution of the largest prime factors of integers. Then following Bergelson and Richter's techniques, we will show the analogues of all of these results for the arithmetic semigroups arising from finite fields as well. (c) 2022 Elsevier Inc. All rights reserved.
关键词Prime Number Theorem Liouville function Largest prime factors Uniquely ergodic Uniform distribution
DOI10.1016/j.ffa.2022.102029
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000805452200007
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61479
专题中国科学院数学与系统科学研究院
通讯作者Wang, Biao
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Biao. Dynamics on the number of prime divisors for additive arithmetic semigroups[J]. FINITE FIELDS AND THEIR APPLICATIONS,2022,81:28.
APA Wang, Biao.(2022).Dynamics on the number of prime divisors for additive arithmetic semigroups.FINITE FIELDS AND THEIR APPLICATIONS,81,28.
MLA Wang, Biao."Dynamics on the number of prime divisors for additive arithmetic semigroups".FINITE FIELDS AND THEIR APPLICATIONS 81(2022):28.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Biao]的文章
百度学术
百度学术中相似的文章
[Wang, Biao]的文章
必应学术
必应学术中相似的文章
[Wang, Biao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。