CSpace
Conformalized temporal convolutional quantile regression networks for wind power interval forecasting
Hu, Jianming1; Luo, Qingxi1; Tang, Jingwei2; Heng, Jiani3; Deng, Yuwen1
2022-06-01
发表期刊ENERGY
ISSN0360-5442
卷号248页码:16
摘要Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of wind energy. Valid coverage and short interval length are the two most critical targets in interval prediction to attain reliable and accurate information, providing effective support for decision-makers to better control the risks in the power planning. This paper proposes a novel interval prediction approach named conformalized temporal convolutional quantile regression networks (CTCQRN) which combines the conformalized quantile regression (CQR) algorithm with a temporal convolutional network (TCN), without making any distributional assumptions. The proposed model inherits the advantages of quantile regression and conformal prediction that is fully adaptive to heteroscedasticity implicated in data, and meets the theoretical guarantee of valid coverage. As opposed to conventional RNN-based approaches, the adopted TCN architecture frees from suffering iterative propagation and gradient vanishing/explosion, and can handle very long sequences in a parallel manner. Case studies on two different geographical wind power datasets show that the proposed model has a distinct edge over benchmark models in goals of valid coverage and narrow interval bandwidth, which can help to ensure the economic and secure operation of the electric power system.(c) 2022 Elsevier Ltd. All rights reserved.
关键词Wind power interval prediction Temporal convolutional network Conformalized quantile regression
DOI10.1016/j.energy.2022.123497
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[72071053] ; National Natural Science Foundation of China[71701053] ; Natural Science Foundation of Guangdong Province[2020A151501527]
WOS研究方向Thermodynamics ; Energy & Fuels
WOS类目Thermodynamics ; Energy & Fuels
WOS记录号WOS:000792627100007
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61268
专题中国科学院数学与系统科学研究院
通讯作者Luo, Qingxi
作者单位1.Guangzhou Univ, Coll Econ & Stat, Guangzhou, Peoples R China
2.Univ Macau, Fac Sci & Technol, Dept Math, Macau, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Hu, Jianming,Luo, Qingxi,Tang, Jingwei,et al. Conformalized temporal convolutional quantile regression networks for wind power interval forecasting[J]. ENERGY,2022,248:16.
APA Hu, Jianming,Luo, Qingxi,Tang, Jingwei,Heng, Jiani,&Deng, Yuwen.(2022).Conformalized temporal convolutional quantile regression networks for wind power interval forecasting.ENERGY,248,16.
MLA Hu, Jianming,et al."Conformalized temporal convolutional quantile regression networks for wind power interval forecasting".ENERGY 248(2022):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Jianming]的文章
[Luo, Qingxi]的文章
[Tang, Jingwei]的文章
百度学术
百度学术中相似的文章
[Hu, Jianming]的文章
[Luo, Qingxi]的文章
[Tang, Jingwei]的文章
必应学术
必应学术中相似的文章
[Hu, Jianming]的文章
[Luo, Qingxi]的文章
[Tang, Jingwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。