KMS Of Academy of mathematics and systems sciences, CAS
Resolution of ideals associated to subspace arrangements | |
Conca, Aldo1; Tsakiris, Manolis C.1,2 | |
2022 | |
发表期刊 | ALGEBRA & NUMBER THEORY
![]() |
ISSN | 1937-0652 |
卷号 | 16期号:5页码:1120-1140 |
摘要 | Let I-1, ... , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I-1, ... , In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals J(P), where P is a certain poset ideal associated to the underlying subspace arrangement. |
关键词 | subspace arrangements free resolutions |
DOI | 10.2140/ant.2022.16.1121 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000848196700004 |
出版者 | MATHEMATICAL SCIENCE PUBL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/61044 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Conca, Aldo |
作者单位 | 1.Univ Genoa, Dipartimento Matemat, Genoa, Italy 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Conca, Aldo,Tsakiris, Manolis C.. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2022,16(5):1120-1140. |
APA | Conca, Aldo,&Tsakiris, Manolis C..(2022).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY,16(5),1120-1140. |
MLA | Conca, Aldo,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY 16.5(2022):1120-1140. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论