CSpace
Resolution of ideals associated to subspace arrangements
Conca, Aldo1; Tsakiris, Manolis C.1,2
2022
发表期刊ALGEBRA & NUMBER THEORY
ISSN1937-0652
卷号16期号:5页码:1120-1140
摘要Let I-1, ... , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I-1, ... , In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals J(P), where P is a certain poset ideal associated to the underlying subspace arrangement.
关键词subspace arrangements free resolutions
DOI10.2140/ant.2022.16.1121
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000848196700004
出版者MATHEMATICAL SCIENCE PUBL
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61044
专题中国科学院数学与系统科学研究院
通讯作者Conca, Aldo
作者单位1.Univ Genoa, Dipartimento Matemat, Genoa, Italy
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Conca, Aldo,Tsakiris, Manolis C.. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2022,16(5):1120-1140.
APA Conca, Aldo,&Tsakiris, Manolis C..(2022).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY,16(5),1120-1140.
MLA Conca, Aldo,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY 16.5(2022):1120-1140.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Conca, Aldo]的文章
[Tsakiris, Manolis C.]的文章
百度学术
百度学术中相似的文章
[Conca, Aldo]的文章
[Tsakiris, Manolis C.]的文章
必应学术
必应学术中相似的文章
[Conca, Aldo]的文章
[Tsakiris, Manolis C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。