CSpace
Optimality conditions for homogeneous polynomial optimization on the unit sphere
Huang, Lei1,2
2022-10-07
发表期刊OPTIMIZATION LETTERS
ISSN1862-4472
页码8
摘要In this note, we prove that for homogeneous polynomial optimization on the sphere, if the objective f is generic in the input space, all feasible points satisfying the first order and second order necessary optimality conditions are local minimizers, which addresses an issue raised in the recent work by Lasserre (Optimization Letters, 2021). As a corollary, this implies that Lasserre's hierarchy has finite convergence when f is generic.
关键词Homogeneous polynomials Optimization on the unit sphere Optimality conditions
DOI10.1007/s11590-022-01940-3
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11688101] ; National Natural Science Foundation of China[12288201]
WOS研究方向Operations Research & Management Science ; Mathematics
WOS类目Operations Research & Management Science ; Mathematics, Applied
WOS记录号WOS:000864961200001
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60933
专题中国科学院数学与系统科学研究院
通讯作者Huang, Lei
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Huang, Lei. Optimality conditions for homogeneous polynomial optimization on the unit sphere[J]. OPTIMIZATION LETTERS,2022:8.
APA Huang, Lei.(2022).Optimality conditions for homogeneous polynomial optimization on the unit sphere.OPTIMIZATION LETTERS,8.
MLA Huang, Lei."Optimality conditions for homogeneous polynomial optimization on the unit sphere".OPTIMIZATION LETTERS (2022):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Lei]的文章
百度学术
百度学术中相似的文章
[Huang, Lei]的文章
必应学术
必应学术中相似的文章
[Huang, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。