CSpace
An extended GCRD algorithm for parametric univariate polynomial matrices and application to parametric Smith form
Wang, Dingkang1,2; Wang, Hesong1,2; Wei, Jingjing1,2; Xiao, Fanghui3
2023-03-01
发表期刊JOURNAL OF SYMBOLIC COMPUTATION
ISSN0747-7171
卷号115页码:248-265
摘要The first extended greatest common right divisor (GCRD) algorithm for parametric univariate polynomial matrices is presented. The starting point of this GCRD algorithm is the free property of submodules over univariate polynomial rings. We convert the computation of GCRDs to that of free basis for modules and prove that a free basis of the submodule generated by row vectors of input matrices forms just a GCRD of these matrices. The GCRD algorithm is obtained by computing a minimal Grobner basis for the corresponding submodule since a minimal Grobner basis of submodules is a free basis for univariate cases. While the key idea of extended algorithm is to construct a special module by adding the unit vectors which can record the representation coefficients. This method based on modules can be naturally generalized to the parametric case because of the comprehensive Grobner systems for modules. As a consequence, we obtain an extended GCRD algorithm for parametric univariate polynomial matrices. More importantly, we apply the proposed extended GCD algorithm for univariate polynomials (as a special case of matrices) to the computation of Smith normal form, and give the first algorithm for reducing a univariate polynomial matrix with parameters to its Smith normal form. (C) 2022 Elsevier Ltd. All rights reserved.
关键词Extended greatest common right divisor Parametric univariate polynomial matrix Comprehensive Gr?bner system Smith normal form
DOI10.1016/j.jsc.2022.07.006
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12171469] ; CAS Key Project[QYZDJ-SSW-SYS022] ; National Key Research and Development Project[2020YFA0712300]
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Theory & Methods ; Mathematics, Applied
WOS记录号WOS:000860188200011
出版者ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60906
专题中国科学院数学与系统科学研究院
通讯作者Wang, Dingkang
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Hunan Normal Univ, MOE LCSM, Sch Math & Stat, Hunan 410081, Peoples R China
推荐引用方式
GB/T 7714
Wang, Dingkang,Wang, Hesong,Wei, Jingjing,et al. An extended GCRD algorithm for parametric univariate polynomial matrices and application to parametric Smith form[J]. JOURNAL OF SYMBOLIC COMPUTATION,2023,115:248-265.
APA Wang, Dingkang,Wang, Hesong,Wei, Jingjing,&Xiao, Fanghui.(2023).An extended GCRD algorithm for parametric univariate polynomial matrices and application to parametric Smith form.JOURNAL OF SYMBOLIC COMPUTATION,115,248-265.
MLA Wang, Dingkang,et al."An extended GCRD algorithm for parametric univariate polynomial matrices and application to parametric Smith form".JOURNAL OF SYMBOLIC COMPUTATION 115(2023):248-265.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Dingkang]的文章
[Wang, Hesong]的文章
[Wei, Jingjing]的文章
百度学术
百度学术中相似的文章
[Wang, Dingkang]的文章
[Wang, Hesong]的文章
[Wei, Jingjing]的文章
必应学术
必应学术中相似的文章
[Wang, Dingkang]的文章
[Wang, Hesong]的文章
[Wei, Jingjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。