CSpace
Upper and Lower Bounds for Matrix Discrepancy
Xie, Jiaxin1; Xu, Zhiqiang2,3; Zhu, Ziheng2,3
2022-12-01
发表期刊JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
ISSN1069-5869
卷号28期号:6页码:23
摘要The aim of this paper is to study the matrix discrepancy problem. Assume that xi(1), ..., xi(n) are independent scalar random variables with finite support and u(1), ..., u(n) is an element of C-d. Let C-0 be the minimal constant for which the following holds: Disc(u(1)u(1)*,..., u(n)u(n)* ;xi(1), ..., xi(n)) := min(epsilon 1 subset of S1, ..., epsilon n subset of Sn) parallel to Sigma(n)(i=1) E[xi(i)]u(i) u(i)* - Sigma(n)(i=1) epsilon(i)u(i)u(i)*parallel to <= C-0.sigma, where sigma(2) = parallel to Sigma(n)(i=1) Var [xi(i)] (u(i)u(i)*)(2)parallel to and S-j denotes the support of xi(j), j = 1, ..., n. Motivated by the technology developed by Bownik, Casazza, Marcus, and Speegle [7], we prove C-0 <= 3. This improves Kyng, Luh and Song's method with which C-0 <= 4 [21]. For the case where {u(i)}(i=1)(n) subset of C-d is a unit-norm tight frame with n <= 2d - 1 and xi(1), ..., xi(n) are independent Rademacher random variables, we present the exact value of Disc (u(1)u(1)*, ..., u(n)u(n)* ;xi(1), ..., xi(n)) = root n/d.sigma, which implies C-0 >= root 2.
关键词Matrix discrepancy Tight frame Interlacing polynomials Kadison-Singer problem
DOI10.1007/s00041-022-09976-w
收录类别SCI
语种英语
资助项目National Science Fund for Distinguished Young Scholars[12025108] ; NSFC[12001026] ; NSFC[12071019] ; NSFC[12021001]
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000870331200002
出版者SPRINGER BIRKHAUSER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60738
专题中国科学院数学与系统科学研究院
通讯作者Xu, Zhiqiang
作者单位1.Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Xie, Jiaxin,Xu, Zhiqiang,Zhu, Ziheng. Upper and Lower Bounds for Matrix Discrepancy[J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,2022,28(6):23.
APA Xie, Jiaxin,Xu, Zhiqiang,&Zhu, Ziheng.(2022).Upper and Lower Bounds for Matrix Discrepancy.JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,28(6),23.
MLA Xie, Jiaxin,et al."Upper and Lower Bounds for Matrix Discrepancy".JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS 28.6(2022):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Jiaxin]的文章
[Xu, Zhiqiang]的文章
[Zhu, Ziheng]的文章
百度学术
百度学术中相似的文章
[Xie, Jiaxin]的文章
[Xu, Zhiqiang]的文章
[Zhu, Ziheng]的文章
必应学术
必应学术中相似的文章
[Xie, Jiaxin]的文章
[Xu, Zhiqiang]的文章
[Zhu, Ziheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。