KMS Of Academy of mathematics and systems sciences, CAS
Upper and Lower Bounds for Matrix Discrepancy | |
Xie, Jiaxin1; Xu, Zhiqiang2,3; Zhu, Ziheng2,3 | |
2022-12-01 | |
发表期刊 | JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
![]() |
ISSN | 1069-5869 |
卷号 | 28期号:6页码:23 |
摘要 | The aim of this paper is to study the matrix discrepancy problem. Assume that xi(1), ..., xi(n) are independent scalar random variables with finite support and u(1), ..., u(n) is an element of C-d. Let C-0 be the minimal constant for which the following holds: Disc(u(1)u(1)*,..., u(n)u(n)* ;xi(1), ..., xi(n)) := min(epsilon 1 subset of S1, ..., epsilon n subset of Sn) parallel to Sigma(n)(i=1) E[xi(i)]u(i) u(i)* - Sigma(n)(i=1) epsilon(i)u(i)u(i)*parallel to <= C-0.sigma, where sigma(2) = parallel to Sigma(n)(i=1) Var [xi(i)] (u(i)u(i)*)(2)parallel to and S-j denotes the support of xi(j), j = 1, ..., n. Motivated by the technology developed by Bownik, Casazza, Marcus, and Speegle [7], we prove C-0 <= 3. This improves Kyng, Luh and Song's method with which C-0 <= 4 [21]. For the case where {u(i)}(i=1)(n) subset of C-d is a unit-norm tight frame with n <= 2d - 1 and xi(1), ..., xi(n) are independent Rademacher random variables, we present the exact value of Disc (u(1)u(1)*, ..., u(n)u(n)* ;xi(1), ..., xi(n)) = root n/d.sigma, which implies C-0 >= root 2. |
关键词 | Matrix discrepancy Tight frame Interlacing polynomials Kadison-Singer problem |
DOI | 10.1007/s00041-022-09976-w |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science Fund for Distinguished Young Scholars[12025108] ; NSFC[12001026] ; NSFC[12071019] ; NSFC[12021001] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000870331200002 |
出版者 | SPRINGER BIRKHAUSER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/60738 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Xu, Zhiqiang |
作者单位 | 1.Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Jiaxin,Xu, Zhiqiang,Zhu, Ziheng. Upper and Lower Bounds for Matrix Discrepancy[J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,2022,28(6):23. |
APA | Xie, Jiaxin,Xu, Zhiqiang,&Zhu, Ziheng.(2022).Upper and Lower Bounds for Matrix Discrepancy.JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,28(6),23. |
MLA | Xie, Jiaxin,et al."Upper and Lower Bounds for Matrix Discrepancy".JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS 28.6(2022):23. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论