CSpace  > 系统科学研究所
Exactly fractional solutions of the (2+1)-dimensional modified KP equation via some fractional transformations
Xie, Fuding1; Yan, Zhenya2
2008-05-01
发表期刊CHAOS SOLITONS & FRACTALS
ISSN0960-0779
卷号36期号:4页码:1108-1112
摘要In this paper, the (2+1)-dimensional modified Kadomtsev-Petviashvil (KP) equation is investigated with the aid of symbolic computation. We use some fractional transformations to obtain many types of new exact solutions of (2+1)dimensional modified KP equation. These solutions include rational solutions, periodic wave solutions, solitary wave solutions and doubly periodic wave solutions. These transformations can be also extended to other nonlinear wave equations. (c) 2006 Elsevier Ltd. All rights reserved.
DOI10.1016/j.chaos.2006.07.035
语种英语
WOS研究方向Mathematics ; Physics
WOS类目Mathematics, Interdisciplinary Applications ; Physics, Multidisciplinary ; Physics, Mathematical
WOS记录号WOS:000253671400036
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/6067
专题系统科学研究所
通讯作者Xie, Fuding
作者单位1.Liaoning Normal Univ, Dept Comp Sci, Dalian 116029, Liaoning, Peoples R China
2.Chinese Acad Sci, AMSS, Inst Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Xie, Fuding,Yan, Zhenya. Exactly fractional solutions of the (2+1)-dimensional modified KP equation via some fractional transformations[J]. CHAOS SOLITONS & FRACTALS,2008,36(4):1108-1112.
APA Xie, Fuding,&Yan, Zhenya.(2008).Exactly fractional solutions of the (2+1)-dimensional modified KP equation via some fractional transformations.CHAOS SOLITONS & FRACTALS,36(4),1108-1112.
MLA Xie, Fuding,et al."Exactly fractional solutions of the (2+1)-dimensional modified KP equation via some fractional transformations".CHAOS SOLITONS & FRACTALS 36.4(2008):1108-1112.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Fuding]的文章
[Yan, Zhenya]的文章
百度学术
百度学术中相似的文章
[Xie, Fuding]的文章
[Yan, Zhenya]的文章
必应学术
必应学术中相似的文章
[Xie, Fuding]的文章
[Yan, Zhenya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。