CSpace
Deep Domain Decomposition Methods: Helmholtz Equation
Li, Wuyang1,3; Wang, Ziming2,4; Cui, Tao2,4; Xu, Yingxiang1; Xiang, Xueshuang3
2023-02-01
发表期刊ADVANCES IN APPLIED MATHEMATICS AND MECHANICS
ISSN2070-0733
卷号15期号:1页码:118-138
摘要This paper proposes a deep-learning-based Robin-Robin domain decom-position method (DeepDDM) for Helmholtz equations. We first present the plane wave activation-based neural network (PWNN), which is more efficient for solving Helmholtz equations with constant coefficients and wavenumber k than finite differ-ence methods (FDM). On this basis, we use PWNN to discretize the subproblems di-vided by domain decomposition methods (DDM), which is the main idea of Deep-DDM. This paper will investigate the number of iterations of using DeepDDM for continuous and discontinuous Helmholtz equations. The results demonstrate that: DeepDDM exhibits behaviors consistent with conventional robust FDM-based domain decomposition method (FDM-DDM) under the same Robin parameters, i.e., the num-ber of iterations by DeepDDM is almost the same as that of FDM-DDM. By choosing suitable Robin parameters on different subdomains, the convergence rate is almost constant with the rise of wavenumber in both continuous and discontinuous cases. The performance of DeepDDM on Helmholtz equations may provide new insights for improving the PDE solver by deep learning.
关键词Helmholtz equation deep learning domain decomposition method plane wave method
DOI10.4208/aamm.OA-2021-0305
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2019YFA0709600] ; National Key R&D Program of China[2019YFA0709602] ; China NSF[11831016] ; China NSF[12171468] ; China NSF[11771440] ; China NSF[12071069] ; Fundamental Research Funds for the Central Universities[JGPY202101] ; Innovation Foundation of Qian Xuesen Laboratory of Space Technology
WOS研究方向Mathematics ; Mechanics
WOS类目Mathematics, Applied ; Mechanics
WOS记录号WOS:000880390000004
出版者GLOBAL SCIENCE PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60662
专题中国科学院数学与系统科学研究院
通讯作者Xiang, Xueshuang
作者单位1.Northeast Normal Univ, Jilin Natl Appl Math Ctr NENU, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, LSEC, Beijing 100190, Peoples R China
3.China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
4.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Wuyang,Wang, Ziming,Cui, Tao,et al. Deep Domain Decomposition Methods: Helmholtz Equation[J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,2023,15(1):118-138.
APA Li, Wuyang,Wang, Ziming,Cui, Tao,Xu, Yingxiang,&Xiang, Xueshuang.(2023).Deep Domain Decomposition Methods: Helmholtz Equation.ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,15(1),118-138.
MLA Li, Wuyang,et al."Deep Domain Decomposition Methods: Helmholtz Equation".ADVANCES IN APPLIED MATHEMATICS AND MECHANICS 15.1(2023):118-138.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Wuyang]的文章
[Wang, Ziming]的文章
[Cui, Tao]的文章
百度学术
百度学术中相似的文章
[Li, Wuyang]的文章
[Wang, Ziming]的文章
[Cui, Tao]的文章
必应学术
必应学术中相似的文章
[Li, Wuyang]的文章
[Wang, Ziming]的文章
[Cui, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。