CSpace
A novel hybrid IGA-EIEQ numerical method for the Allen-Cahn/Cahn-Hilliard equations on complex curved surfaces
Pan, Qing1; Chen, Chong2; Zhang, Yongjie Jessica3; Yang, Xiaofeng4
2023-02-01
发表期刊COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
ISSN0045-7825
卷号404页码:21
摘要We present an efficient fully discrete algorithm for solving the Allen-Cahn and Cahn-Hilliard equations on complex curved surfaces. The spatial discretization employs the recently developed IGA (isogeometric analysis) framework, where we adopt the strategy of Loop subdivision with the superior adaptability of any topological structure, and the basis functions are quartic box-splines used to define the subdivided surface. The time discretization is based on the so-called EIEQ (explicit-Invariant Energy Quadratization) approach, which applies multiple newly defined variables to linearize the nonlinear potential and realize the efficient decoupled type computation. The combination of these two methods can help us to gain a linear, second-order time accurate scheme with the property of unconditional energy stability, whose rigorous proof is given. We also develop a nonlocal splitting technique such that we only need to solve decoupled, constant-coefficient elliptic equations at each time step. Finally, the effectiveness of the developed numerical algorithm is verified by various numerical experiments on the complex benchmark curved surfaces such as bunny, splayed, and head surfaces.(c) 2022 Elsevier B.V. All rights reserved.
关键词Loop subdivision IGA-EIEQ Decoupled Unconditional energy stability Allen-Cahn Cahn-Hilliard
DOI10.1016/j.cma.2022.115767
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12171147] ; National Natural Science Foundation of China[11971076] ; key research project of Beijing Natural Science Foundation, China[Z180002] ; National Science Foundation of USA[DMS-2012490]
WOS研究方向Engineering ; Mathematics ; Mechanics
WOS类目Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号WOS:000896882700003
出版者ELSEVIER SCIENCE SA
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60486
专题中国科学院数学与系统科学研究院
通讯作者Yang, Xiaofeng
作者单位1.Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
3.Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
4.Univ South Carolina, Dept Math, Columbia, SC 29208 USA
推荐引用方式
GB/T 7714
Pan, Qing,Chen, Chong,Zhang, Yongjie Jessica,et al. A novel hybrid IGA-EIEQ numerical method for the Allen-Cahn/Cahn-Hilliard equations on complex curved surfaces[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2023,404:21.
APA Pan, Qing,Chen, Chong,Zhang, Yongjie Jessica,&Yang, Xiaofeng.(2023).A novel hybrid IGA-EIEQ numerical method for the Allen-Cahn/Cahn-Hilliard equations on complex curved surfaces.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,404,21.
MLA Pan, Qing,et al."A novel hybrid IGA-EIEQ numerical method for the Allen-Cahn/Cahn-Hilliard equations on complex curved surfaces".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 404(2023):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Qing]的文章
[Chen, Chong]的文章
[Zhang, Yongjie Jessica]的文章
百度学术
百度学术中相似的文章
[Pan, Qing]的文章
[Chen, Chong]的文章
[Zhang, Yongjie Jessica]的文章
必应学术
必应学术中相似的文章
[Pan, Qing]的文章
[Chen, Chong]的文章
[Zhang, Yongjie Jessica]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。