CSpace
Liouville-Type Theorems for Fractional and Higher-Order Henon-Hardy Type Equations via the Method of Scaling Spheres
Dai, Wei1,2; Qin, Guolin3,4
2022-04-11
发表期刊INTERNATIONAL MATHEMATICS RESEARCH NOTICES
ISSN1073-7928
页码70
摘要In this paper, we aim to develop the (direct) method of scaling spheres, its integral forms, and the method of scaling spheres in a local way. As applications, we investigate Liouville properties of nonnegative solutions to fractional and higher-order Henon-Hardy type equations (-Delta)(alpha/2) u(x) = f (x, u(x)) in R-n, R-+(n) or B-R(0) with n > alpha, 0 < alpha < 2 or alpha = 2m with 1 <= m < n/2. We first consider the typical case f (x, u) =vertical bar x vertical bar(a)u(p) with a is an element of (-alpha,infinity) and 0 < p < p(c)(a) := n+alpha+2a/n-alpha. By using the method of scaling spheres, we prove Liouville theorems for the above Henon-Hardy equations and equivalent integral equations (IEs). In R-n, our results improve the known Liouville theorems for some especially admissible subranges of a and 1 < p < min {n+alpha+a/n-alpha, p(c)(a)} to the full range alpha is an element of (-alpha,infinity) and p is an element of (0, p(c)(a)). In particular, when a > 0, we covered the gap p is an element of [n+alpha+a/n-alpha, p(c)(a)). For bounded domains (i.e., balls), we also apply the method of scaling spheres to derive Liouville theorems for super-critical problems. Extensions to PDEs and IEs with general nonlinearities f (x, u) are also included (Theorem 1.31). In addition to improving most of known Liouville type results to the sharp exponents in a unified way, we believe the method of scaling spheres developed here can be applied conveniently to various fractional or higher order problems with singularities or without translation invariance or in the cases the method of moving planes in conjunction with Kelvin transforms do not work.
DOI10.1093/imrn/rnac079
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11971049] ; National Natural Science Foundation of China[11501021] ; Fundamental Research Funds for the Central Universities ; State Scholarship Fund of China[201806025011]
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000784154500001
出版者OXFORD UNIV PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60296
专题中国科学院数学与系统科学研究院
通讯作者Dai, Wei
作者单位1.Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
2.Univ Sorbonne Paris Nord, Inst Galilee, LAGA, UMR 7539, F-93430 Villetaneuse, France
3.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Dai, Wei,Qin, Guolin. Liouville-Type Theorems for Fractional and Higher-Order Henon-Hardy Type Equations via the Method of Scaling Spheres[J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2022:70.
APA Dai, Wei,&Qin, Guolin.(2022).Liouville-Type Theorems for Fractional and Higher-Order Henon-Hardy Type Equations via the Method of Scaling Spheres.INTERNATIONAL MATHEMATICS RESEARCH NOTICES,70.
MLA Dai, Wei,et al."Liouville-Type Theorems for Fractional and Higher-Order Henon-Hardy Type Equations via the Method of Scaling Spheres".INTERNATIONAL MATHEMATICS RESEARCH NOTICES (2022):70.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dai, Wei]的文章
[Qin, Guolin]的文章
百度学术
百度学术中相似的文章
[Dai, Wei]的文章
[Qin, Guolin]的文章
必应学术
必应学术中相似的文章
[Dai, Wei]的文章
[Qin, Guolin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。