KMS Of Academy of mathematics and systems sciences, CAS
Understanding Schubert's Book (III) | |
Li, Banghe | |
2022-03-01 | |
发表期刊 | ACTA MATHEMATICA SCIENTIA
![]() |
ISSN | 0252-9602 |
卷号 | 42期号:2页码:437-453 |
摘要 | In 13 of Schubert's famous book on enumerative geometry, he provided a few formulas called coincidence formulas, which deal with coincidence points where a pair of points coincide. These formulas play an important role in his method. As an application, Schubert utilized these formulas to give a second method for calculating the number of planar curves in a one dimensional system that are tangent to a given planar curve. In this paper, we give proofs for these formulas and justify his application to planar curves in the language of modern algebraic geometry. We also prove that curves that are tangent to a given planar curve is actually a condition in the space of planar curves and other relevant issues. |
关键词 | Hilbert problem 15 enumeration geometry coincidence formula |
DOI | 10.1007/s10473-022-0201-1 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Center for Mathematics and Interdisciplinary Sciences, CAS |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000750822600001 |
出版者 | SPRINGER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/59978 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, Banghe |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Banghe. Understanding Schubert's Book (III)[J]. ACTA MATHEMATICA SCIENTIA,2022,42(2):437-453. |
APA | Li, Banghe.(2022).Understanding Schubert's Book (III).ACTA MATHEMATICA SCIENTIA,42(2),437-453. |
MLA | Li, Banghe."Understanding Schubert's Book (III)".ACTA MATHEMATICA SCIENTIA 42.2(2022):437-453. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Banghe]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Banghe]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Banghe]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论