CSpace
Understanding Schubert's Book (III)
Li, Banghe
2022-03-01
发表期刊ACTA MATHEMATICA SCIENTIA
ISSN0252-9602
卷号42期号:2页码:437-453
摘要In 13 of Schubert's famous book on enumerative geometry, he provided a few formulas called coincidence formulas, which deal with coincidence points where a pair of points coincide. These formulas play an important role in his method. As an application, Schubert utilized these formulas to give a second method for calculating the number of planar curves in a one dimensional system that are tangent to a given planar curve. In this paper, we give proofs for these formulas and justify his application to planar curves in the language of modern algebraic geometry. We also prove that curves that are tangent to a given planar curve is actually a condition in the space of planar curves and other relevant issues.
关键词Hilbert problem 15 enumeration geometry coincidence formula
DOI10.1007/s10473-022-0201-1
收录类别SCI
语种英语
资助项目National Center for Mathematics and Interdisciplinary Sciences, CAS
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000750822600001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59978
专题中国科学院数学与系统科学研究院
通讯作者Li, Banghe
作者单位Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Banghe. Understanding Schubert's Book (III)[J]. ACTA MATHEMATICA SCIENTIA,2022,42(2):437-453.
APA Li, Banghe.(2022).Understanding Schubert's Book (III).ACTA MATHEMATICA SCIENTIA,42(2),437-453.
MLA Li, Banghe."Understanding Schubert's Book (III)".ACTA MATHEMATICA SCIENTIA 42.2(2022):437-453.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Banghe]的文章
百度学术
百度学术中相似的文章
[Li, Banghe]的文章
必应学术
必应学术中相似的文章
[Li, Banghe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。