KMS Of Academy of mathematics and systems sciences, CAS
Algorithms for the metric ring star problem with fixed edge-cost ratio | |
Chen, Xujin1,2![]() ![]() ![]() ![]() | |
2021-10-01 | |
Source Publication | JOURNAL OF COMBINATORIAL OPTIMIZATION
![]() |
ISSN | 1382-6905 |
Volume | 42Issue:3Pages:499-523 |
Abstract | We address the metric ring star problem with fixed edge-cost ratio, abbreviated as RSP. Given a complete graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with a specified depot node d is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in V$$\end{document}, a nonnegative cost function c is an element of R+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {R}_+<^>E$$\end{document} on E which satisfies the triangle inequality, and an edge-cost ratio M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}, the RSP is to locate a ring R=(V ',E ')\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=(V',E')$$\end{document} in G, a simple cycle through d or d itself, aiming to minimize the sum of two costs: the cost for constructing ring R, i.e., M center dot n-ary sumation e is an element of E ' c(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\cdot \sum _{e\in E'}c(e)$$\end{document}, and the cost for attaching nodes in V\V '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V{\setminus } V'$$\end{document} to their closest ring nodes (in R), i.e., n-ary sumation u is an element of V\V ' minv is an element of V ' c(uv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u\in V{\setminus } V'}\min _{v\in V'}c(uv)$$\end{document}. We show that the singleton ring d is an optimal solution of the RSP when M >=(|V|-1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge (|V|-1)/2$$\end{document}. This particularly implies a |V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{|V|-1}$$\end{document}-approximation algorithm for the RSP with any M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}. We present randomized 3-approximation algorithm and deterministic 5.06-approximation algorithm for the RSP, by adapting algorithms for the tour-connected facility location problem (tour-CFLP) and single-source rent-or-buy problem due to Eisenbrand et al. and Williamson and van Zuylen, respectively. Building on the PTAS of Eisenbrand et al. for the tour-CFLP, we give a PTAS for the RSP with |V|/M=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|/M=O(1)$$\end{document}. We also consider the capacitated RSP (CRSP) which puts an upper limit k on the number of leaf nodes that a ring node can serve, and present a (10+6M/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10+6M/k)$$\end{document}-approximation algorithm for this capacitated generalization. Heuristics based on some natural strategies are proposed for both the RSP and CRSP. Simulation results demonstrate that the proposed approximation and heuristic algorithms have good practical performances. |
Keyword | Ring star Approximation algorithms Heuristics Local search Connected facility location |
DOI | 10.1007/s10878-019-00418-w |
Indexed By | SCI |
Language | 英语 |
WOS Research Area | Computer Science ; Mathematics |
WOS Subject | Computer Science, Interdisciplinary Applications ; Mathematics, Applied |
WOS ID | WOS:000712986900010 |
Publisher | SPRINGER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/59540 |
Collection | 应用数学研究所 |
Corresponding Author | Wang, Chenhao |
Affiliation | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 3.City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China 4.Beijing Elect Sci & Technol Inst, Beijing 100070, Peoples R China |
Recommended Citation GB/T 7714 | Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,et al. Algorithms for the metric ring star problem with fixed edge-cost ratio[J]. JOURNAL OF COMBINATORIAL OPTIMIZATION,2021,42(3):499-523. |
APA | Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,Tang, Zhongzheng,Wang, Chenhao,&Zhang, Ying.(2021).Algorithms for the metric ring star problem with fixed edge-cost ratio.JOURNAL OF COMBINATORIAL OPTIMIZATION,42(3),499-523. |
MLA | Chen, Xujin,et al."Algorithms for the metric ring star problem with fixed edge-cost ratio".JOURNAL OF COMBINATORIAL OPTIMIZATION 42.3(2021):499-523. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment