CSpace  > 应用数学研究所
Algorithms for the metric ring star problem with fixed edge-cost ratio
Chen, Xujin1,2; Hu, Xiaodong1,2; Jia, Xiaohua3; Tang, Zhongzheng1,2,3; Wang, Chenhao1,2,3; Zhang, Ying4
2021-10-01
发表期刊JOURNAL OF COMBINATORIAL OPTIMIZATION
ISSN1382-6905
卷号42期号:3页码:499-523
摘要We address the metric ring star problem with fixed edge-cost ratio, abbreviated as RSP. Given a complete graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with a specified depot node d is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in V$$\end{document}, a nonnegative cost function c is an element of R+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {R}_+<^>E$$\end{document} on E which satisfies the triangle inequality, and an edge-cost ratio M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}, the RSP is to locate a ring R=(V ',E ')\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=(V',E')$$\end{document} in G, a simple cycle through d or d itself, aiming to minimize the sum of two costs: the cost for constructing ring R, i.e., M center dot n-ary sumation e is an element of E ' c(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\cdot \sum _{e\in E'}c(e)$$\end{document}, and the cost for attaching nodes in V\V '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V{\setminus } V'$$\end{document} to their closest ring nodes (in R), i.e., n-ary sumation u is an element of V\V ' minv is an element of V ' c(uv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u\in V{\setminus } V'}\min _{v\in V'}c(uv)$$\end{document}. We show that the singleton ring d is an optimal solution of the RSP when M >=(|V|-1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge (|V|-1)/2$$\end{document}. This particularly implies a |V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{|V|-1}$$\end{document}-approximation algorithm for the RSP with any M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}. We present randomized 3-approximation algorithm and deterministic 5.06-approximation algorithm for the RSP, by adapting algorithms for the tour-connected facility location problem (tour-CFLP) and single-source rent-or-buy problem due to Eisenbrand et al. and Williamson and van Zuylen, respectively. Building on the PTAS of Eisenbrand et al. for the tour-CFLP, we give a PTAS for the RSP with |V|/M=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|/M=O(1)$$\end{document}. We also consider the capacitated RSP (CRSP) which puts an upper limit k on the number of leaf nodes that a ring node can serve, and present a (10+6M/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10+6M/k)$$\end{document}-approximation algorithm for this capacitated generalization. Heuristics based on some natural strategies are proposed for both the RSP and CRSP. Simulation results demonstrate that the proposed approximation and heuristic algorithms have good practical performances.
关键词Ring star Approximation algorithms Heuristics Local search Connected facility location
DOI10.1007/s10878-019-00418-w
收录类别SCI
语种英语
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Interdisciplinary Applications ; Mathematics, Applied
WOS记录号WOS:000712986900010
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59540
专题应用数学研究所
通讯作者Wang, Chenhao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
4.Beijing Elect Sci & Technol Inst, Beijing 100070, Peoples R China
推荐引用方式
GB/T 7714
Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,et al. Algorithms for the metric ring star problem with fixed edge-cost ratio[J]. JOURNAL OF COMBINATORIAL OPTIMIZATION,2021,42(3):499-523.
APA Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,Tang, Zhongzheng,Wang, Chenhao,&Zhang, Ying.(2021).Algorithms for the metric ring star problem with fixed edge-cost ratio.JOURNAL OF COMBINATORIAL OPTIMIZATION,42(3),499-523.
MLA Chen, Xujin,et al."Algorithms for the metric ring star problem with fixed edge-cost ratio".JOURNAL OF COMBINATORIAL OPTIMIZATION 42.3(2021):499-523.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xujin]的文章
[Hu, Xiaodong]的文章
[Jia, Xiaohua]的文章
百度学术
百度学术中相似的文章
[Chen, Xujin]的文章
[Hu, Xiaodong]的文章
[Jia, Xiaohua]的文章
必应学术
必应学术中相似的文章
[Chen, Xujin]的文章
[Hu, Xiaodong]的文章
[Jia, Xiaohua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。