KMS Of Academy of mathematics and systems sciences, CAS
| Normalized solutions to Schrodinger systems with linear and nonlinear couplings | |
| Yun, Zhaoyang1,2; Zhang, Zhitao1,2,3 | |
| 2022-02-01 | |
| 发表期刊 | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
![]() |
| ISSN | 0022-247X |
| 卷号 | 506期号:1页码:19 |
| 摘要 | In this paper, we study important Schrodinger systems with linear and nonlinear couplings {-Delta u(1) - lambda(1)u(1) = mu(1)vertical bar u(1)vertical bar(p1-2)u(1) + r(1)beta vertical bar u(1)vertical bar(r1-2)vertical bar u(2)vertical bar(r2) + kappa(x)u(2) in R-N, -Delta u(2) - lambda(2)u(2) = mu(2)vertical bar u(2)vertical bar(p2-2)u(2) + r(2) beta vertical bar u(1)vertical bar(r1)vertical bar u(2)vertical bar(r2-2)u(2) + kappa(x)u(1) in R-N u(1) is an element of H-1 (R-N), u(2) is an element of H-1 (R-N), with the condition integral(RN) u(1)(2) - a(1)(2), integral(RN) u(2)(2) - a(2)(2), where N >= 2, mu(1), mu(2), a(1), a(2) > 0, beta is an element of R, 2 < p(1), p(2) < 2*, r(1), r(2) > 1, r(1) + r(2) < 2*,kappa(x) is an element of L-infinity(R-N) with fixed sign and lambda(1), lambda(2) are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for L-2-subcritical case when N >= 2, and use minimax method to prove this system has a normalized radially symmetric positive solution for L-2-supercritical case when N = 3, p(1) = p(2) = 4, r(1) = r(2) = 2. (C) 2021 Elsevier Inc. All rights reserved. |
| 关键词 | Nonlinear Schrodinger systems Normalized solutions Ekland variational principle Minimax principle |
| DOI | 10.1016/j.jmaa.2021.125564 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[11771428] ; National Natural Science Foundation of China[12031015] ; National Natural Science Foundation of China[12026217] |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000705028400022 |
| 出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/59423 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Zhang, Zhitao |
| 作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 3.Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China |
| 推荐引用方式 GB/T 7714 | Yun, Zhaoyang,Zhang, Zhitao. Normalized solutions to Schrodinger systems with linear and nonlinear couplings[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2022,506(1):19. |
| APA | Yun, Zhaoyang,&Zhang, Zhitao.(2022).Normalized solutions to Schrodinger systems with linear and nonlinear couplings.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,506(1),19. |
| MLA | Yun, Zhaoyang,et al."Normalized solutions to Schrodinger systems with linear and nonlinear couplings".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 506.1(2022):19. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Yun, Zhaoyang]的文章 |
| [Zhang, Zhitao]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Yun, Zhaoyang]的文章 |
| [Zhang, Zhitao]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Yun, Zhaoyang]的文章 |
| [Zhang, Zhitao]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论