CSpace
Two noniterative algorithms for computing posteriors
Yang, Jun1,2; Zou, Guohua2; Zhao, Yu1
2008-07-01
发表期刊COMPUTATIONAL STATISTICS
ISSN0943-4062
卷号23期号:3页码:443-453
摘要In this paper, we first propose a noniterative sampling method to obtain an i.i.d. sample approximately from posteriors by combining the inverse Bayes formula, sampling/importance resampling and posterior mode estimates. We then propose a new exact algorithm to compute posteriors by improving the PMDA-Exact using the sampling-wise IBF. If the posterior mode is available from the EM algorithm, then these two algorithms compute posteriors well and eliminate the convergence problem of Markov Chain Monte Carlo methods. We show good performances of our methods by some examples.
关键词Bayesian computation data augmentation EM algorithm inverse Bayes formula sampling/importance resampling PMDA-Exact
DOI10.1007/s00180-007-0085-5
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000257721500006
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/5926
专题中国科学院数学与系统科学研究院
通讯作者Yang, Jun
作者单位1.Beijing Univ Aeronaut & Astronaut, Dept Syst Engn Engn Technol, Beijing 100083, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Yang, Jun,Zou, Guohua,Zhao, Yu. Two noniterative algorithms for computing posteriors[J]. COMPUTATIONAL STATISTICS,2008,23(3):443-453.
APA Yang, Jun,Zou, Guohua,&Zhao, Yu.(2008).Two noniterative algorithms for computing posteriors.COMPUTATIONAL STATISTICS,23(3),443-453.
MLA Yang, Jun,et al."Two noniterative algorithms for computing posteriors".COMPUTATIONAL STATISTICS 23.3(2008):443-453.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Jun]的文章
[Zou, Guohua]的文章
[Zhao, Yu]的文章
百度学术
百度学术中相似的文章
[Yang, Jun]的文章
[Zou, Guohua]的文章
[Zhao, Yu]的文章
必应学术
必应学术中相似的文章
[Yang, Jun]的文章
[Zou, Guohua]的文章
[Zhao, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。