CSpace
Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models
He, Yanan1; Han, Ai2,3,4; Hong, Yongmiao2,3,5; Sun, Yuying2,3,5; Wang, Shouyang2,3,5
2021-07-03
发表期刊ECONOMETRIC REVIEWS
ISSN0747-4938
卷号40期号:6页码:584-606
摘要Crude oil prices are of vital importance for market participants and governments to make energy policies and decisions. In this paper, we apply a newly proposed autoregressive conditional interval (ACI) model to forecast crude oil prices. Compared with the existing point-based forecasting models, the interval-based ACI model can capture the dynamics of oil prices in both level and range of variation in a unified framework. Rich information contained in interval-valued observations can be simultaneously utilized, thus enhancing parameter estimation efficiency and model forecasting accuracy. In forecasting the monthly West Texas Intermediate (WTI) crude oil prices, we document that the ACI models outperform the popular point-based time series models. In particular, ACI models deliver better forecasts than univariate ARMA models and the vector error correction model (VECM). The gain of ACI models is found in out-of-sample monthly price interval forecasts as well as forecasts for point-valued highs, lows, and ranges. Compared with GARCH and conditional autoregressive range (CARR) models, ACI models are also superior in volatility (conditional variance) forecasts of oil prices. A trading strategy that makes use of the monthly high and low forecasts is further developed. This trading strategy generally yields more profitable trading returns under the ACI models than the point-based VECM.
关键词ACI model interval-valued crude oil prices range trading strategy volatility forecast
DOI10.1080/07474938.2021.1889202
收录类别SCI
语种英语
资助项目China NNSF[71703156] ; China NNSF[72073126] ; China NNSF[72091212] ; China NNSF[71403231] ; China NNSF[71671183] ; China NNSF[71988101]
WOS研究方向Business & Economics ; Mathematics ; Mathematical Methods In Social Sciences
WOS类目Economics ; Mathematics, Interdisciplinary Applications ; Social Sciences, Mathematical Methods ; Statistics & Probability
WOS记录号WOS:000681583400003
出版者TAYLOR & FRANCIS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59030
专题中国科学院数学与系统科学研究院
通讯作者Hong, Yongmiao; Sun, Yuying
作者单位1.Xiamen Univ, Wang Yannan Inst Studies Econ, Xiamen, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Forecasting Sci, Beijing, Peoples R China
4.JD Com, Beijing, Peoples R China
5.Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
推荐引用方式
GB/T 7714
He, Yanan,Han, Ai,Hong, Yongmiao,et al. Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models[J]. ECONOMETRIC REVIEWS,2021,40(6):584-606.
APA He, Yanan,Han, Ai,Hong, Yongmiao,Sun, Yuying,&Wang, Shouyang.(2021).Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models.ECONOMETRIC REVIEWS,40(6),584-606.
MLA He, Yanan,et al."Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models".ECONOMETRIC REVIEWS 40.6(2021):584-606.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Yanan]的文章
[Han, Ai]的文章
[Hong, Yongmiao]的文章
百度学术
百度学术中相似的文章
[He, Yanan]的文章
[Han, Ai]的文章
[Hong, Yongmiao]的文章
必应学术
必应学术中相似的文章
[He, Yanan]的文章
[Han, Ai]的文章
[Hong, Yongmiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。