CSpace
Reducing Simulation Input-Model Risk via Input Model Averaging
Nelson, Barry L.1; Wan, Alan T. K.2; Zou, Guohua3; Zhang, Xinyu4,5; Jiang, Xi1
2021-03-01
发表期刊INFORMS JOURNAL ON COMPUTING
ISSN1091-9856
卷号33期号:2页码:672-684
摘要Input uncertainty is an aspect of simulation model risk that arises when the driving input distributions are derived or "fit" to real-world, historical data. Although there has been significant progress on quantifying and hedging against input uncertainty, there has been no direct attempt to reduce it via better input modeling. The meaning of "better" depends on the context and the objective: Our context is when (a) there are one or more families of parametric distributions that are plausible choices; (b) the real-world historical data are not expected to perfectly conform to any of them; and (c) our primary goal is to obtain higher-fidelity simulation output rather than to discover the "true" distribution. In this paper, we show that frequentist model averaging can be an effective way to create input models that better represent the true, unknown input distribution, thereby reducing model risk. Input model averaging builds from standard input modeling practice, is not computationally burdensome, requires no change in how the simulation is executed nor any follow-up experiments, and is available on the Comprehensive R Archive Network (CRAN). We provide theoretical and empirical support for our approach.
关键词input modeling stochastic simulation input uncertainty
DOI10.1287/ijoc.2020.0994
收录类别SCI
语种英语
资助项目National Science Foundation[CMMI-1634982] ; City University of Hong Kong[7004985] ; Hong Kong Research Grants Council[11500419] ; National Natural Science Foundation of China[71973116] ; National Natural Science Foundation of China[11971323] ; National Natural Science Foundation of China[11529101] ; National Natural Science Foundation of China[71925007] ; National Natural Science Foundation of China[71522004] ; National Natural Science Foundation of China[71631008] ; Ministry of Science and Technology of China[2016YFB0502301] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences
WOS研究方向Computer Science ; Operations Research & Management Science
WOS类目Computer Science, Interdisciplinary Applications ; Operations Research & Management Science
WOS记录号WOS:000656875100016
出版者INFORMS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58813
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Xinyu
作者单位1.Northwestern Univ, Evanston, IL 60208 USA
2.City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China
3.Capital Normal Univ, Beijing 100048, Peoples R China
4.Univ Sci & Technol China, Hefei 230052, Peoples R China
5.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Nelson, Barry L.,Wan, Alan T. K.,Zou, Guohua,et al. Reducing Simulation Input-Model Risk via Input Model Averaging[J]. INFORMS JOURNAL ON COMPUTING,2021,33(2):672-684.
APA Nelson, Barry L.,Wan, Alan T. K.,Zou, Guohua,Zhang, Xinyu,&Jiang, Xi.(2021).Reducing Simulation Input-Model Risk via Input Model Averaging.INFORMS JOURNAL ON COMPUTING,33(2),672-684.
MLA Nelson, Barry L.,et al."Reducing Simulation Input-Model Risk via Input Model Averaging".INFORMS JOURNAL ON COMPUTING 33.2(2021):672-684.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nelson, Barry L.]的文章
[Wan, Alan T. K.]的文章
[Zou, Guohua]的文章
百度学术
百度学术中相似的文章
[Nelson, Barry L.]的文章
[Wan, Alan T. K.]的文章
[Zou, Guohua]的文章
必应学术
必应学术中相似的文章
[Nelson, Barry L.]的文章
[Wan, Alan T. K.]的文章
[Zou, Guohua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。