CSpace
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
Lu, Lu1; Jin, Pengzhan2,3; Pang, Guofei2; Zhang, Zhongqiang4; Karniadakis, George Em2
2021-03-01
发表期刊NATURE MACHINE INTELLIGENCE
卷号3期号:3页码:218-+
摘要It is widely known that neural networks (NNs) are universal approximators of continuous functions. However, a less known but powerful result is that a NN with a single hidden layer can accurately approximate any nonlinear continuous operator. This universal approximation theorem of operators is suggestive of the structure and potential of deep neural networks (DNNs) in learning continuous operators or complex systems from streams of scattered data. Here, we thus extend this theorem to DNNs. We design a new network with small generalization error, the deep operator network (DeepONet), which consists of a DNN for encoding the discrete input function space (branch net) and another DNN for encoding the domain of the output functions (trunk net). We demonstrate that DeepONet can learn various explicit operators, such as integrals and fractional Laplacians, as well as implicit operators that represent deterministic and stochastic differential equations. We study different formulations of the input function space and its effect on the generalization error for 16 different diverse applications.
DOI10.1038/s42256-021-00302-5
收录类别SCI
语种英语
资助项目DOE PhILMs project[DE-SC0019453] ; DARPA-CompMods[HR00112090062]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000641834300001
出版者SPRINGERNATURE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58488
专题中国科学院数学与系统科学研究院
通讯作者Karniadakis, George Em
作者单位1.MIT, Dept Math, Cambridge, MA 02139 USA
2.Brown Univ, Div Appl Math, Providence, RI 02912 USA
3.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing, Peoples R China
4.Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
推荐引用方式
GB/T 7714
Lu, Lu,Jin, Pengzhan,Pang, Guofei,et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. NATURE MACHINE INTELLIGENCE,2021,3(3):218-+.
APA Lu, Lu,Jin, Pengzhan,Pang, Guofei,Zhang, Zhongqiang,&Karniadakis, George Em.(2021).Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators.NATURE MACHINE INTELLIGENCE,3(3),218-+.
MLA Lu, Lu,et al."Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators".NATURE MACHINE INTELLIGENCE 3.3(2021):218-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Lu]的文章
[Jin, Pengzhan]的文章
[Pang, Guofei]的文章
百度学术
百度学术中相似的文章
[Lu, Lu]的文章
[Jin, Pengzhan]的文章
[Pang, Guofei]的文章
必应学术
必应学术中相似的文章
[Lu, Lu]的文章
[Jin, Pengzhan]的文章
[Pang, Guofei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。