CSpace
Distribution-Free One-Pass Learning
Zhao, Peng1; Wang, Xinqiang2; Xie, Siyu3; Guo, Lei2; Zhou, Zhi-Hua1
2021-03-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号33期号:3页码:951-963
摘要In many large-scale machine learning applications, data are accumulated over time, and thus, an appropriate model should be able to update in an online style. In particular, it would be ideal to have a storage independent from the data volume, and scan each data item only once. Meanwhile, the data distribution usually changes during the accumulation procedure, making distribution-free one-pass learning a challenging task. In this paper, we propose a simple yet effective approach for this task, without requiring prior knowledge about the change, where every data item can be discarded once scanned. We also present a variant for high-dimensional situations, by exploiting compressed sensing to reduce computational and storage complexity. Theoretical analysis shows that our proposal converges under mild assumptions, and the performance is validated on both synthetic and real-world datasets.
关键词Data models Random variables Proposals Training Prediction algorithms Task analysis Compressed sensing Distribution change one-pass learning robust learning non-stationary environments
DOI10.1109/TKDE.2019.2937078
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018YFB1004300] ; National Science Foundation of China[61921006] ; Collaborative Innovation Center of Novel Software Technology and Industrialization
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000615042700010
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58198
专题中国科学院数学与系统科学研究院
通讯作者Zhou, Zhi-Hua
作者单位1.Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
3.Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA
推荐引用方式
GB/T 7714
Zhao, Peng,Wang, Xinqiang,Xie, Siyu,et al. Distribution-Free One-Pass Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,33(3):951-963.
APA Zhao, Peng,Wang, Xinqiang,Xie, Siyu,Guo, Lei,&Zhou, Zhi-Hua.(2021).Distribution-Free One-Pass Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,33(3),951-963.
MLA Zhao, Peng,et al."Distribution-Free One-Pass Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 33.3(2021):951-963.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Peng]的文章
[Wang, Xinqiang]的文章
[Xie, Siyu]的文章
百度学术
百度学术中相似的文章
[Zhao, Peng]的文章
[Wang, Xinqiang]的文章
[Xie, Siyu]的文章
必应学术
必应学术中相似的文章
[Zhao, Peng]的文章
[Wang, Xinqiang]的文章
[Xie, Siyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。