KMS Of Academy of mathematics and systems sciences, CAS
The continuity equation of almost Hermitian metrics | |
Li, Chang1; Zheng, Tao2 | |
2021-02-15 | |
发表期刊 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
ISSN | 0022-0396 |
卷号 | 274页码:1015-1036 |
摘要 | We extend the continuity equation of the Kahler metrics introduced by La Nave & Tian and the Hermitian metrics introduced by Sherman & Weinkove to the almost Hermitian metrics, and establish its interval of maximal existence. As an example, we study the continuity equation on the (locally) homogeneous manifolds in more detail. (C) 2020 Elsevier Inc. All rights reserved. |
关键词 | Continuity equation Almost Hermitian metric Maximal time existence Chern-Ricci form Chern scalar curvature |
DOI | 10.1016/j.jde.2020.11.016 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology Research Fund Program for Young Scholars |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000600845300026 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/57920 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zheng, Tao |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China 2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Chang,Zheng, Tao. The continuity equation of almost Hermitian metrics[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2021,274:1015-1036. |
APA | Li, Chang,&Zheng, Tao.(2021).The continuity equation of almost Hermitian metrics.JOURNAL OF DIFFERENTIAL EQUATIONS,274,1015-1036. |
MLA | Li, Chang,et al."The continuity equation of almost Hermitian metrics".JOURNAL OF DIFFERENTIAL EQUATIONS 274(2021):1015-1036. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Chang]的文章 |
[Zheng, Tao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Chang]的文章 |
[Zheng, Tao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Chang]的文章 |
[Zheng, Tao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论