CSpace
The continuity equation of almost Hermitian metrics
Li, Chang1; Zheng, Tao2
2021-02-15
发表期刊JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN0022-0396
卷号274页码:1015-1036
摘要We extend the continuity equation of the Kahler metrics introduced by La Nave & Tian and the Hermitian metrics introduced by Sherman & Weinkove to the almost Hermitian metrics, and establish its interval of maximal existence. As an example, we study the continuity equation on the (locally) homogeneous manifolds in more detail. (C) 2020 Elsevier Inc. All rights reserved.
关键词Continuity equation Almost Hermitian metric Maximal time existence Chern-Ricci form Chern scalar curvature
DOI10.1016/j.jde.2020.11.016
收录类别SCI
语种英语
资助项目China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology Research Fund Program for Young Scholars
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000600845300026
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/57920
专题中国科学院数学与系统科学研究院
通讯作者Zheng, Tao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Li, Chang,Zheng, Tao. The continuity equation of almost Hermitian metrics[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2021,274:1015-1036.
APA Li, Chang,&Zheng, Tao.(2021).The continuity equation of almost Hermitian metrics.JOURNAL OF DIFFERENTIAL EQUATIONS,274,1015-1036.
MLA Li, Chang,et al."The continuity equation of almost Hermitian metrics".JOURNAL OF DIFFERENTIAL EQUATIONS 274(2021):1015-1036.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
百度学术
百度学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
必应学术
必应学术中相似的文章
[Li, Chang]的文章
[Zheng, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。