CSpace
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Jin, Pengzhan1,2; Zhang, Zhen3; Zhu, Aiqing1,2; Tang, Yifa1,2; Karniadakis, George Em3
2020-12-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号132页码:166-179
摘要We propose new symplectic networks (SympNets) for identifying Hamiltonian systems from data based on a composition of linear, activation and gradient modules. In particular, we define two classes of SympNets: the LA-SympNets composed of linear and activation modules, and the G-SympNets composed of gradient modules. Correspondingly, we prove two new universal approximation theorems that demonstrate that SympNets can approximate arbitrary symplectic maps based on appropriate activation functions. We then perform several experiments including the pendulum, double pendulum and three-body problems to investigate the expressivity and the generalization ability of SympNets. The simulation results show that even very small size SympNets can generalize well, and are able to handle both separable and non-separable Hamiltonian systems with data points resulting from short or long time steps. In all the test cases, SympNets outperform the baseline models, and are much faster in training and prediction. We also develop an extended version of SympNets to learn the dynamics from irregularly sampled data. This extended version of SympNets can be thought of as a universal model representing the solution to an arbitrary Hamiltonian system. (c) 2020 Elsevier Ltd. All rights reserved.
关键词Deep learning Physics-informed Dynamical systems Hamiltonian systems Symplectic maps Symplectic integrators
DOI10.1016/j.neunet.2020.08.017
收录类别SCI
语种英语
资助项目Major Project on New Generation of Artificial Intelligence from MOST of China[2018AAA0101002] ; National Natural Science Foundation of China[11771438] ; DOE, USA PhILMs project[DE-SC0019453]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000590619800015
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/57811
专题中国科学院数学与系统科学研究院
通讯作者Tang, Yifa; Karniadakis, George Em
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Brown Univ, Div Appl Math, Providence, RI 02912 USA
推荐引用方式
GB/T 7714
Jin, Pengzhan,Zhang, Zhen,Zhu, Aiqing,et al. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems[J]. NEURAL NETWORKS,2020,132:166-179.
APA Jin, Pengzhan,Zhang, Zhen,Zhu, Aiqing,Tang, Yifa,&Karniadakis, George Em.(2020).SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems.NEURAL NETWORKS,132,166-179.
MLA Jin, Pengzhan,et al."SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems".NEURAL NETWORKS 132(2020):166-179.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jin, Pengzhan]的文章
[Zhang, Zhen]的文章
[Zhu, Aiqing]的文章
百度学术
百度学术中相似的文章
[Jin, Pengzhan]的文章
[Zhang, Zhen]的文章
[Zhu, Aiqing]的文章
必应学术
必应学术中相似的文章
[Jin, Pengzhan]的文章
[Zhang, Zhen]的文章
[Zhu, Aiqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。