KMS Of Academy of mathematics and systems sciences, CAS
| Boundedness and Spec trum of Multiplicative Convolution Operators Induced by Arithmetic Functions | |
| 其他题名 | Boundedness and Spectrum of Multiplicative Convolution Operators Induced by Arithmetic Functions |
| Kibrom GEBREMESKEL1; Lin Zhe HUANG1 | |
| 2019 | |
| 发表期刊 | 数学学报:英文版
![]() |
| ISSN | 1439-8516 |
| 卷号 | 35.0期号:008页码:1300-1310 |
| 摘要 | In this paper, we consider a multiplicative convolution operator Mf acting on a Hilbert spaces l^2(N,ω;). In particular, we focus on the operators M1 and Mμ, where μ, is the Mobius function. We investigate conditions on the weight ω under which the operators M1 and Mμ are bounded. We show that for a positive and completely multiplicative function f,M1 is bounded on l^2(N, f^2) if and only if ||f||1 1. As an application, we obtain some results on the spectrum of M1^*M1 and M^*μMμ. Moreover, von Neumann algebra generated by a certain family of bounded operators is also considered. |
| 其他摘要 | In this paper, we consider a multiplicative convolution operator M_f acting on a Hilbert spaces ?~2( N, ω ). In particular, we focus on the operators M_1 and M_μ, where μ is the Mobius function. We investigate conditions on the weight ω under which the operators M_1 and M_μ are bounded. We show that for a positive and completely multiplicative function f, M_1 is bounded on ?~2( N, f~2) if and only if ‖f‖_1 1. As an application, we obtain some results on the spectrum of M_1~* M_1 and M_μ~* M_μ. Moreover, von Neumann algebra generated by a certain family of bounded operators is also considered. |
| 关键词 | Arithmetic functions Mobius function von Neumann algebra |
| 收录类别 | CSCD |
| 语种 | 中文 |
| 资助项目 | [Templeton Religion Trust] ; [Chinese Academy of Sciences] |
| CSCD记录号 | CSCD:6538831 |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/55459 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 作者单位 | 1.中国科学院数学与系统科学研究院 2.Department of Mathematics, College of Natural and Computational Sciences, Aksum University, Aksum, Tigray, Ethiopia |
| 推荐引用方式 GB/T 7714 | Kibrom GEBREMESKEL,Lin Zhe HUANG. Boundedness and Spec trum of Multiplicative Convolution Operators Induced by Arithmetic Functions[J]. 数学学报:英文版,2019,35.0(008):1300-1310. |
| APA | Kibrom GEBREMESKEL,&Lin Zhe HUANG.(2019).Boundedness and Spec trum of Multiplicative Convolution Operators Induced by Arithmetic Functions.数学学报:英文版,35.0(008),1300-1310. |
| MLA | Kibrom GEBREMESKEL,et al."Boundedness and Spec trum of Multiplicative Convolution Operators Induced by Arithmetic Functions".数学学报:英文版 35.0.008(2019):1300-1310. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论