KMS Of Academy of mathematics and systems sciences, CAS
Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation | |
Li, FC | |
2004-12-01 | |
发表期刊 | APPLIED MATHEMATICS LETTERS
![]() |
ISSN | 0893-9659 |
卷号 | 17期号:12页码:1409-1414 |
摘要 | This paper deals with the higher-order Kirchhoff-type equation with nonlinear dissipation u(tt) + (integral(Omega) \D(m)u\ dx)(q) (-Delta)(m)u + u(t)\u(t)\(r) = \u\(P)u, x is an element of Omega, t > 0, in a bounded domain, where m > 1 is a positive integer, q, p, r > 0 are positive constants. We obtain that the solution exists globally if p less than or equal to r, while if p > max{r, 2q}, then for any initial data with negative initial energy, the solution blows up at finite time in Lp+2 norm. (C) 2004 Elsevier Ltd. All rights reserved. |
关键词 | higher-order Kirchhoff-type equation nonlinear dissipation global existence blow-up |
DOI | 10.1016/j.aml.2003.07.014 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000225666400015 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/549 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, FC |
作者单位 | CAS, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Li, FC. Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation[J]. APPLIED MATHEMATICS LETTERS,2004,17(12):1409-1414. |
APA | Li, FC.(2004).Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation.APPLIED MATHEMATICS LETTERS,17(12),1409-1414. |
MLA | Li, FC."Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation".APPLIED MATHEMATICS LETTERS 17.12(2004):1409-1414. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, FC]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, FC]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, FC]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论