CSpace
The Algorithms about Fast Non-local Means Based Image Denoising
其他题名The Algorithms about Fast Non-local Means Based Image Denoising
Xing Lili1; Chang Qianshun2; Qiao Tiantian1
2012
发表期刊应用数学学报:英文版
ISSN0168-9673
卷号28.0期号:002页码:247-254
摘要Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this paper, We compared several fast non-local means methods, and proposed a new fast algorithm. Numerical experiments showed that our algorithm considerably reduced the computational cost, and obtained visually pleasant images.
其他摘要Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this paper, We compared several fast non-local means methods, and proposed a new fast algorithm. Numerical experiments showed that our algorithm considerably reduced the computational cost, and obtained visually pleasant images.
关键词图像去噪 快速算法 计算成本 图像处理 降噪效果 成本费用 数值实验
收录类别CSCD
语种中文
CSCD记录号CSCD:4524603
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/54175
专题中国科学院数学与系统科学研究院
作者单位1.中国石油大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Xing Lili,Chang Qianshun,Qiao Tiantian. The Algorithms about Fast Non-local Means Based Image Denoising[J]. 应用数学学报:英文版,2012,28.0(002):247-254.
APA Xing Lili,Chang Qianshun,&Qiao Tiantian.(2012).The Algorithms about Fast Non-local Means Based Image Denoising.应用数学学报:英文版,28.0(002),247-254.
MLA Xing Lili,et al."The Algorithms about Fast Non-local Means Based Image Denoising".应用数学学报:英文版 28.0.002(2012):247-254.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xing Lili]的文章
[Chang Qianshun]的文章
[Qiao Tiantian]的文章
百度学术
百度学术中相似的文章
[Xing Lili]的文章
[Chang Qianshun]的文章
[Qiao Tiantian]的文章
必应学术
必应学术中相似的文章
[Xing Lili]的文章
[Chang Qianshun]的文章
[Qiao Tiantian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。