CSpace
Self-maps of p-local infinite projective spaces
其他题名Self-maps of p-local infinite projective spaces
Lin XianZu1
2012-01-01
发表期刊SCIENCE CHINA-MATHEMATICS
ISSN1674-7283
卷号55期号:4页码:739-744
摘要Denote by Z((p)) (resp.(Z) over cap (p)) the p localization (resp. p completion) of Z. Then we have the canonical inclusion Z((p)) hooked right arrow(Z) over cap (p). Let S-(p)(2n-1) be the p-local (2n-1)-sphere and let B-(p)(2n) be a connected p-local space satisfying S-(p)(2n-1) similar or equal to Omega B-(p)(2n); then H*(B-(p)(2n), Z((p))) = Z((p))u with |u| = 2n. Define the degree of a self-map f of B-(p)(2n) to be k is an element of Z((p)) such that f*(u) = ku. Using the theory of integer-valued polynomials we show that there exists a self-map of B-(p)(2n) of degree k if and only if k is an n-th power in (Z) over cap ((p)).
其他摘要Denote by Z_((p)) (resp.Z_p) the p localization (resp.p completion) of Z.Then we have the canonical inclusion Z_((p)) → Z_p.Let S~(2n-1)_((p)) be the p-local (2n-1)-sphere and let B~(2n)_((p)) be a connected p-local space satisfying S~(2n-1)_((p)) ~= ΩB~(2n)_((p)) ;then H - (B~(2n)_((p)),Z_((p))) = Z_((p)) u with |u| = 2n.Define the degree of a self-map f of B~(2n)_((p)) to be k ∈ Z_((p)) such that f *(u) = ku.Using the theory of integer-valued polynomials we show that there exists a self-map of B~(2n)_((p)) of degree k if and only if k is an n-th power in Z_p.
关键词COMPACT GROUPS CLASSIFICATION OPERATIONS infinite projective space self-map integer-valued polynomial
收录类别CSCD
语种英语
CSCD记录号CSCD:4537871
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/53518
专题中国科学院数学与系统科学研究院
作者单位1.福建师范大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Lin XianZu. Self-maps of p-local infinite projective spaces[J]. SCIENCE CHINA-MATHEMATICS,2012,55(4):739-744.
APA Lin XianZu.(2012).Self-maps of p-local infinite projective spaces.SCIENCE CHINA-MATHEMATICS,55(4),739-744.
MLA Lin XianZu."Self-maps of p-local infinite projective spaces".SCIENCE CHINA-MATHEMATICS 55.4(2012):739-744.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin XianZu]的文章
百度学术
百度学术中相似的文章
[Lin XianZu]的文章
必应学术
必应学术中相似的文章
[Lin XianZu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。