CSpace
RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS
Tang, Tao1,2; Wang, Li-Lian3; Yuan, Huifang4; Zhou, Tao5,6
2020
发表期刊SIAM JOURNAL ON SCIENTIFIC COMPUTING
ISSN1064-8275
卷号42期号:2页码:A585-A611
摘要Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decaying slowly and subject to certain power law. Their numerical solutions are underexplored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identities related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by precomputing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach.
关键词fractional Laplacian Gegenbauer polynomials modified rational functions unbounded domains Fourier transforms spectral methods
DOI10.1137/19M1244299
收录类别SCI
语种英语
资助项目NSF of China[11822111] ; NSF of China[11688101] ; NSF of China[11571351] ; NSF of China[11731006] ; Science Challenge Project[TZ2018001] ; Singapore MOE AcRF Tier 2 grants[MOE2018-T2-1-059] ; Singapore MOE AcRF Tier 2 grants[MOE2017-T2-2-144] ; Hong Kong Ph.D. fellowship ; Youth Innovation Promotion Association (CAS)
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000551251700015
出版者SIAM PUBLICATIONS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/51883
专题中国科学院数学与系统科学研究院
通讯作者Tang, Tao
作者单位1.BNUH KBU United Int Coll, Div Sci & Technol, Zhuhai, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
3.Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
4.Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
5.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing, Peoples R China
6.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tang, Tao,Wang, Li-Lian,Yuan, Huifang,et al. RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2020,42(2):A585-A611.
APA Tang, Tao,Wang, Li-Lian,Yuan, Huifang,&Zhou, Tao.(2020).RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS.SIAM JOURNAL ON SCIENTIFIC COMPUTING,42(2),A585-A611.
MLA Tang, Tao,et al."RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS".SIAM JOURNAL ON SCIENTIFIC COMPUTING 42.2(2020):A585-A611.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Tao]的文章
[Wang, Li-Lian]的文章
[Yuan, Huifang]的文章
百度学术
百度学术中相似的文章
[Tang, Tao]的文章
[Wang, Li-Lian]的文章
[Yuan, Huifang]的文章
必应学术
必应学术中相似的文章
[Tang, Tao]的文章
[Wang, Li-Lian]的文章
[Yuan, Huifang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。