CSpace
A Mean Value Formula and a Liouville Theorem for the Complex Monge-Ampere Equation
Li, Chao1; Li, Jiayu1,2; Zhang, Xi1
2020-02-01
发表期刊INTERNATIONAL MATHEMATICS RESEARCH NOTICES
ISSN1073-7928
卷号2020期号:3页码:853-867
摘要In this paper, we prove a mean value formula for bounded subharmonic Hermitian matrix valued function on a complete Riemannian manifold with nonnegative Ricci curvature. As its application, we obtain a Liouville type theorem for the complex Monge-Ampere equation on product manifolds.
DOI10.1093/imrn/rny035
收录类别SCI
语种英语
资助项目National Science Foundation (NSF)[11625106] ; National Science Foundation (NSF)[11571332] ; National Science Foundation (NSF)[11721101] ; National Science Foundation (NSF)[11526212]
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000522852700008
出版者OXFORD UNIV PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/50980
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Xi
作者单位1.Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
2.Chinese Acad Sci, AMSS, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, Chao,Li, Jiayu,Zhang, Xi. A Mean Value Formula and a Liouville Theorem for the Complex Monge-Ampere Equation[J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2020,2020(3):853-867.
APA Li, Chao,Li, Jiayu,&Zhang, Xi.(2020).A Mean Value Formula and a Liouville Theorem for the Complex Monge-Ampere Equation.INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2020(3),853-867.
MLA Li, Chao,et al."A Mean Value Formula and a Liouville Theorem for the Complex Monge-Ampere Equation".INTERNATIONAL MATHEMATICS RESEARCH NOTICES 2020.3(2020):853-867.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chao]的文章
[Li, Jiayu]的文章
[Zhang, Xi]的文章
百度学术
百度学术中相似的文章
[Li, Chao]的文章
[Li, Jiayu]的文章
[Zhang, Xi]的文章
必应学术
必应学术中相似的文章
[Li, Chao]的文章
[Li, Jiayu]的文章
[Zhang, Xi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。