KMS Of Academy of mathematics and systems sciences, CAS
| Uniqueness of twisted linear periods and twisted Shalika periods | |
| Chen, Fulin1; Sun, Binyong2,3 | |
| 2020 | |
| 发表期刊 | SCIENCE CHINA-MATHEMATICS
![]() |
| ISSN | 1674-7283 |
| 卷号 | 63期号:1页码:1-22 |
| 摘要 | Let k be a local field of characteristic zero. Let pi be an irreducible admissible smooth representation of GL(2n)(k). We prove that for all but countably many characters chi's of GL(n)(k) x GL(n)(k), the space of chi-equivariant(continuous in the archimedean case) linear functionals on pi is at most one dimensional. Using this, we prove the uniqueness of twisted Shalika models. |
| 关键词 | linear period Shalika model irreducible representation uniqueness generalized function |
| DOI | 10.1007/s11425-018-9502-y |
| 收录类别 | SCI |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000511688400001 |
| 出版者 | SCIENCE PRESS |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/50832 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Sun, Binyong |
| 作者单位 | 1.Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
| 推荐引用方式 GB/T 7714 | Chen, Fulin,Sun, Binyong. Uniqueness of twisted linear periods and twisted Shalika periods[J]. SCIENCE CHINA-MATHEMATICS,2020,63(1):1-22. |
| APA | Chen, Fulin,&Sun, Binyong.(2020).Uniqueness of twisted linear periods and twisted Shalika periods.SCIENCE CHINA-MATHEMATICS,63(1),1-22. |
| MLA | Chen, Fulin,et al."Uniqueness of twisted linear periods and twisted Shalika periods".SCIENCE CHINA-MATHEMATICS 63.1(2020):1-22. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Chen, Fulin]的文章 |
| [Sun, Binyong]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Chen, Fulin]的文章 |
| [Sun, Binyong]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Chen, Fulin]的文章 |
| [Sun, Binyong]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论