KMS Of Academy of mathematics and systems sciences, CAS
| thestabilizerfornqubitsymmetricstates | |
| Shi Xian | |
| 2018 | |
| 发表期刊 | chinesephysicsb
![]() |
| ISSN | 1674-1056 |
| 卷号 | 27期号:10 |
| 摘要 | The stabilizer group for an n-qubit state vertical bar phi > is the set of all invertible local operators (ILO) g = g(1 )circle times g(2) circle times ... g(n), g(i) is an element of L (2,C) such that vertical bar phi > = g vertical bar phi >. Recently, Gour et al. Gour G, Kraus B and Wallach N R 2017 J. Math. Phys. 58 092204 presented that almost all n-qubit states vertical bar psi > own a trivial stabilizer group when n >= 5. In this article, we consider the case when the stabilizer group of an n-qubit symmetric pure state vertical bar psi > is trivial. First we show that the stabilizer group for an n-qubit symmetric pure state vertical bar phi > is nontrivial when n <= 4. Then we present a class of n-qubit symmetric states vertical bar phi > with a trivial stabilizer group when n >= 5. Finally, we propose a conjecture and prove that an n-qubit symmetric pure state owns a trivial stabilizer group when its diversity number is bigger than 5 under the conjecture we make, which confirms the main result of Gour et al. partly. |
| 语种 | 英语 |
| 资助项目 | [National Key Research and Development Program of China] ; [National Natural Science Foundation of China] ; [Knowledge Innovation Program of the Chinese Academy of Sciences (CAS)] ; [Institute of Computing Technology of CAS] |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/48345 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 作者单位 | 中国科学院数学与系统科学研究院 |
| 推荐引用方式 GB/T 7714 | Shi Xian. thestabilizerfornqubitsymmetricstates[J]. chinesephysicsb,2018,27(10). |
| APA | Shi Xian.(2018).thestabilizerfornqubitsymmetricstates.chinesephysicsb,27(10). |
| MLA | Shi Xian."thestabilizerfornqubitsymmetricstates".chinesephysicsb 27.10(2018). |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Shi Xian]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Shi Xian]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Shi Xian]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论