CSpace
A finite algorithm for almost linear complementarity problems
Wang, Zhengyu2,3; Fukushima, Masao1
2007
发表期刊NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
ISSN0163-0563
卷号28期号:11-12页码:1387-1403
摘要We present an algorithm for solving a class of nonlinear complementarity problems called the almost linear complementarity problem (ALCP), which can be used to simulate free boundary problems. The algorithm makes use of a procedure for identifying an active index subset of an ALCP by bounding its solution with an interval vector. It is shown that an acceptable solution of the given ALCP can be obtained by solving at most n systems of equations. Numerical results are reported to illustrate the efficiency of the algorithm for large-scale problems.
关键词active set identification almost linear complementarity problem interval analysis H-matrix
DOI10.1080/01630560701749714
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000252149100012
出版者TAYLOR & FRANCIS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/4599
专题中国科学院数学与系统科学研究院
通讯作者Fukushima, Masao
作者单位1.Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing, Peoples R China
3.Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhengyu,Fukushima, Masao. A finite algorithm for almost linear complementarity problems[J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION,2007,28(11-12):1387-1403.
APA Wang, Zhengyu,&Fukushima, Masao.(2007).A finite algorithm for almost linear complementarity problems.NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION,28(11-12),1387-1403.
MLA Wang, Zhengyu,et al."A finite algorithm for almost linear complementarity problems".NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 28.11-12(2007):1387-1403.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhengyu]的文章
[Fukushima, Masao]的文章
百度学术
百度学术中相似的文章
[Wang, Zhengyu]的文章
[Fukushima, Masao]的文章
必应学术
必应学术中相似的文章
[Wang, Zhengyu]的文章
[Fukushima, Masao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。