CSpace  > 计算数学与科学工程计算研究所
Stokes方程非协调混合元的特征值下界
林群1; 谢和虎1; 罗福生1; 李瑜1; 杨一都2
2010
Source Publication数学的实践与认识
ISSN1000-0984
Volume000Issue:019Pages:157
Abstract通过利用Crouzeix-Raviart元({1,x,y}),旋转元({1,x,y,x~2-y~2}),拓广旋转元({1,x,y,x~2,y~2})以及拓广Crouzeix-Raviart元({1,x,y,x~2+y~2})这四种混合有限元(参看正文中示图)来提供求Stokes特征值下界的方法.并找到恰当的理论框架,重要的是证明不仅统一,而且出奇的短,仅需几行.最后给出相关的数值结果来验证本文的理论分析.
Language英语
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/45610
Collection计算数学与科学工程计算研究所
Affiliation1.中国科学院数学与系统科学研究院
2.贵州师范大学
Recommended Citation
GB/T 7714
林群,谢和虎,罗福生,等. Stokes方程非协调混合元的特征值下界[J]. 数学的实践与认识,2010,000(019):157.
APA 林群,谢和虎,罗福生,李瑜,&杨一都.(2010).Stokes方程非协调混合元的特征值下界.数学的实践与认识,000(019),157.
MLA 林群,et al."Stokes方程非协调混合元的特征值下界".数学的实践与认识 000.019(2010):157.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[林群]'s Articles
[谢和虎]'s Articles
[罗福生]'s Articles
Baidu academic
Similar articles in Baidu academic
[林群]'s Articles
[谢和虎]'s Articles
[罗福生]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[林群]'s Articles
[谢和虎]'s Articles
[罗福生]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.