KMS Of Academy of mathematics and systems sciences, CAS
Shape-based image reconstruction using linearized deformations | |
?ktem,Ozan1; Chen,Chong2; Onur Domani?,Nevzat4; Ravikumar,Pradeep3; Bajaj,Chandrajit4 | |
2017-02-01 | |
发表期刊 | Inverse Problems
![]() |
ISSN | 0266-5611 |
卷号 | 33期号:3 |
摘要 | Abstract We introduce a reconstruction framework that can account for shape related prior information in imaging-related inverse problems. It is a variational scheme that uses a shape functional, whose definition is based on deformable template machinery from computational anatomy. We prove existence and, as a proof of concept, we apply the proposed shape-based reconstruction to 2D tomography with very sparse and/or highly noisy measurements. |
关键词 | tomography image reconstruction indirect image matching computational anatomy shape analysis inverse problems |
DOI | 10.1088/1361-6420/aa55af |
语种 | 英语 |
WOS记录号 | IOP:0266-5611-33-3-aa55af |
出版者 | IOP Publishing |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/435 |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Department of Mathematics, KTH—Royal Institute of Technology, 100 44 Stockholm, Sweden 2.State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China 3.Department of Computer Science, University of Texas at Austin, Austin, TX 78712, United States of America 4.Machine Learning Department, Carnegie Mellon University, Pittsburgh PA 15213, United States of America |
推荐引用方式 GB/T 7714 | ?ktem,Ozan,Chen,Chong,Onur Domani?,Nevzat,et al. Shape-based image reconstruction using linearized deformations[J]. Inverse Problems,2017,33(3). |
APA | ?ktem,Ozan,Chen,Chong,Onur Domani?,Nevzat,Ravikumar,Pradeep,&Bajaj,Chandrajit.(2017).Shape-based image reconstruction using linearized deformations.Inverse Problems,33(3). |
MLA | ?ktem,Ozan,et al."Shape-based image reconstruction using linearized deformations".Inverse Problems 33.3(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论