CSpace  > 应用数学研究所
alinearprogrammingmodelbasedonnetworkflowforpathwayinference
Ren Xianwen; Zhang Xiangsun
2010
发表期刊journalofsystemsscienceandcomplexity
ISSN1009-6124
卷号000期号:005页码:971
摘要Signal transduction pathways play important roles in various biological processes such as cell cycle, apoptosis, proliferation, differentiation and responses to the external stimuli. Efficient computational methods are of great demands to map signaling pathways systematically based on the interactome and microarray data in the post-genome era. This paper proposes a novel approach to infer the pathways based on the network flow well studied in the operation research. The authors define a potentiality variable for each protein to denote the extent to which it contributes to the objective pathway. And the capacity on each edge is not a constant but a function of the potentiality variables of the corresponding two proteins. The total potentiality of all proteins is given an upper bound. The approach is formulated to a linear programming model and solved by the simplex method. Experiments on the yeast sporulation data suggest this novel approach recreats successfully the backbone of the MAPK signaling pathway with a low upper bound of the total potentiality. By increasing the upper bound, the approach successfully predicts all the members of the Mitogen-activated protein kinases (MAPK) pathway responding to the pheromone. This simple but effective approach can also be used to infer the genetic information processing pathways underlying the expression quantitative trait loci (eQTL) associations, illustrated by the second example.
语种英语
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/40640
专题应用数学研究所
作者单位中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Ren Xianwen,Zhang Xiangsun. alinearprogrammingmodelbasedonnetworkflowforpathwayinference[J]. journalofsystemsscienceandcomplexity,2010,000(005):971.
APA Ren Xianwen,&Zhang Xiangsun.(2010).alinearprogrammingmodelbasedonnetworkflowforpathwayinference.journalofsystemsscienceandcomplexity,000(005),971.
MLA Ren Xianwen,et al."alinearprogrammingmodelbasedonnetworkflowforpathwayinference".journalofsystemsscienceandcomplexity 000.005(2010):971.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren Xianwen]的文章
[Zhang Xiangsun]的文章
百度学术
百度学术中相似的文章
[Ren Xianwen]的文章
[Zhang Xiangsun]的文章
必应学术
必应学术中相似的文章
[Ren Xianwen]的文章
[Zhang Xiangsun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。