KMS Of Academy of mathematics and systems sciences, CAS
Gr(o)bner bases in difference-differential modules and difference-differential dimension polynomials | |
ZHOU Meng1; Franz WINKLER2 | |
2008-01-01 | |
发表期刊 | Science in China. Series A: Mathematics
![]() |
ISSN | 1006-9283 |
卷号 | 51期号:9页码:1732 |
摘要 | In this paper we extend the theory of Grobner bases to difference-differential modules and present a new algorithmic approach for computing the Hilbert function of a finitely generated difference-differential module equipped with the natural filtration. We present and verify algorithms for constructing these Grobner bases counterparts. To this aim we introduce the concept of "generalized term order" on N(m) x Z(n) and on difference-differential modules. Using Grobner bases on difference-differential modules we present a direct and algorithmic approach to computing the difference-differential dimension polynomials of a difference-differential module and of a system of linear partial difference-differential equations. |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/39305 |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.中国科学院数学与系统科学研究院 2.RISC-Linz,J.Kepler University Linz |
推荐引用方式 GB/T 7714 | ZHOU Meng,Franz WINKLER. Gr(o)bner bases in difference-differential modules and difference-differential dimension polynomials[J]. Science in China. Series A: Mathematics,2008,51(9):1732. |
APA | ZHOU Meng,&Franz WINKLER.(2008).Gr(o)bner bases in difference-differential modules and difference-differential dimension polynomials.Science in China. Series A: Mathematics,51(9),1732. |
MLA | ZHOU Meng,et al."Gr(o)bner bases in difference-differential modules and difference-differential dimension polynomials".Science in China. Series A: Mathematics 51.9(2008):1732. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[ZHOU Meng]的文章 |
[Franz WINKLER]的文章 |
百度学术 |
百度学术中相似的文章 |
[ZHOU Meng]的文章 |
[Franz WINKLER]的文章 |
必应学术 |
必应学术中相似的文章 |
[ZHOU Meng]的文章 |
[Franz WINKLER]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论