KMS Of Academy of mathematics and systems sciences, CAS
| 由无穷个brown单驱动的随机微分方程解的存在唯一性 | |
曹桂兰1; 何凯2
| |
| 2006 | |
| 发表期刊 | 数学物理学报a辑
![]() |
| ISSN | 1003-3998 |
| 卷号 | 26期号:6页码:813 |
| 摘要 | 考虑如下一维双参数随机微分方程:X_z=x+∑_(j=1)~∞∫_(R_z)σ_j(X_ξ)·dW_ ξ~j+∫_(R_z)b(X_ξ)dξ,其中{W~j,j=1,2,…}为一列无穷个相互独立的实值Brown单.作者定义关于无穷个Brown单的随机积分,并给出方程在非Lipschitz系数的条件下解的存在唯一性的一个结果. |
| 语种 | 英语 |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/38657 |
| 专题 | 应用数学研究所 |
| 作者单位 | 1.清华大学 2.中国科学院数学与系统科学研究院 |
| 推荐引用方式 GB/T 7714 | 曹桂兰,何凯. 由无穷个brown单驱动的随机微分方程解的存在唯一性[J]. 数学物理学报a辑,2006,26(6):813. |
| APA | 曹桂兰,&何凯.(2006).由无穷个brown单驱动的随机微分方程解的存在唯一性.数学物理学报a辑,26(6),813. |
| MLA | 曹桂兰,et al."由无穷个brown单驱动的随机微分方程解的存在唯一性".数学物理学报a辑 26.6(2006):813. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [曹桂兰]的文章 |
| [何凯]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [曹桂兰]的文章 |
| [何凯]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [曹桂兰]的文章 |
| [何凯]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论