CSpace
boundednessandspectrumofmultiplicativeconvolutionoperatorsinducedbyarithmeticfunctions
Gebremeskel Kibrom G; Huang Linzhe
2019
Source Publicationactamathematicasinicaenglishseries
ISSN1439-8516
Volume35Issue:8Pages:1300
AbstractIn this paper, we consider a multiplicative convolution operator Mf acting on a Hilbert spaces l(2)(N,omega). In particular, we focus on the operators M1 and M mu, where mu is the Mobius function. We investigate conditions on the weight omega under which the operators M1 and M mu are bounded. We show that for a positive and completely multiplicative function f, M1 is bounded on l(2)(N,f(2))if and only if parallel to f parallel to(1) 1. As an application, we obtain some results on the spectrum of M1 M1 and M mu M mu. Moreover, von Neumann algebra generated by a certain family of bounded operators is also considered.
Language英语
Funding Project[Templeton Religion Trust] ; [Chinese Academy of Sciences]
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/37719
Collection中国科学院数学与系统科学研究院
Affiliation中国科学院数学与系统科学研究院
Recommended Citation
GB/T 7714
Gebremeskel Kibrom G,Huang Linzhe. boundednessandspectrumofmultiplicativeconvolutionoperatorsinducedbyarithmeticfunctions[J]. actamathematicasinicaenglishseries,2019,35(8):1300.
APA Gebremeskel Kibrom G,&Huang Linzhe.(2019).boundednessandspectrumofmultiplicativeconvolutionoperatorsinducedbyarithmeticfunctions.actamathematicasinicaenglishseries,35(8),1300.
MLA Gebremeskel Kibrom G,et al."boundednessandspectrumofmultiplicativeconvolutionoperatorsinducedbyarithmeticfunctions".actamathematicasinicaenglishseries 35.8(2019):1300.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Gebremeskel Kibrom G]'s Articles
[Huang Linzhe]'s Articles
Baidu academic
Similar articles in Baidu academic
[Gebremeskel Kibrom G]'s Articles
[Huang Linzhe]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Gebremeskel Kibrom G]'s Articles
[Huang Linzhe]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.