Quantitative concentration of stationary measures | |
Ji, Min1,2![]() | |
2019-12-01 | |
发表期刊 | PHYSICA D-NONLINEAR PHENOMENA
![]() |
ISSN | 0167-2789 |
卷号 | 399页码:73-85 |
摘要 | We consider an Ito stochastic differential equation and study the asymptotic behaviors of stationary measures of the corresponding Fokker-Planck equation in the vicinity of a deterministic attractor or a repeller. By establishing global measure estimates in domains of interest, we show Gaussian-like behaviors of these measures in the basins of the attractor and the repeller. Not only do our results quantify the concentration results of stationary measures obtained in Huang et al. (2018), but also they are valid near a usual attractor (resp. repeller) instead of a strong attractor (resp. repeller) assumed in Huang et al. (2018). Our approach in conducting the measure estimates is based on a new idea of constructing a sequence of Lyapunov functions (anti-Lyapunov functions) in the basin of attraction (resp. expansion) of the attractor (resp. repeller). As applications of these measure estimates, we also derive upper bounds for the differential entropy and establish certain entropy-dimension inequalities. (C) 2019 Elsevier B.V. All rights reserved. |
关键词 | Fokker-Planck equation Stationary measure Qualitative concentration Stochastic stability Lyapunov function |
DOI | 10.1016/j.physd.2019.04.006 |
语种 | 英语 |
资助项目 | NSFC[11571344] ; University of Alberta ; NSERC[1257749] ; NSERC[RGPIN-2018-04371] ; NSERC[DGECR-2018-00353] ; PIMS CRG grant ; Jilin University |
WOS研究方向 | Mathematics ; Physics |
WOS类目 | Mathematics, Applied ; Physics, Fluids & Plasmas ; Physics, Multidisciplinary ; Physics, Mathematical |
WOS记录号 | WOS:000482872900006 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/35640 |
专题 | 数学所 |
通讯作者 | Shen, Zhongwei |
作者单位 | 1.Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100080, Peoples R China 3.Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada 4.Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China |
推荐引用方式 GB/T 7714 | Ji, Min,Shen, Zhongwei,Yi, Yingfei. Quantitative concentration of stationary measures[J]. PHYSICA D-NONLINEAR PHENOMENA,2019,399:73-85. |
APA | Ji, Min,Shen, Zhongwei,&Yi, Yingfei.(2019).Quantitative concentration of stationary measures.PHYSICA D-NONLINEAR PHENOMENA,399,73-85. |
MLA | Ji, Min,et al."Quantitative concentration of stationary measures".PHYSICA D-NONLINEAR PHENOMENA 399(2019):73-85. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论