CSpace  > 数学所
ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES
Bufetov, Alexander, I1,2; Nikitin, Pavel P.3,4; Qiu, Yanqi5
2019-04-01
Source PublicationMOSCOW MATHEMATICAL JOURNAL
ISSN1609-3321
Volume19Issue:2Pages:217-274
AbstractOur first result states that the orthogonal and symplectic Bessel processes are rigid in the sense of Ghosh and Peres. Our argument in the Bessel case proceeds by an estimate of the variance of additive statistics in the spirit of Ghosh and Peres. Second, a sufficient condition for number rigidity of stationary Pfaffian processes, relying on the Kolmogorov criterion for interpolation of stationary processes and applicable, in particular, to Pfaffian sine processes, is given in terms of the asymptotics of the spectral measure for additive statistics.
KeywordPfaffian point process stationary point process number rigidity
DOI10.17323/1609-4514-2019-19-2-217-274
Language英语
Funding ProjectEuropean Research Council (ERC) under the European Union[647133] ; RFBR[18-31-20031] ; RFBR[17-01-00433] ; National Natural Science Foundation of China[NSFC Y7116335K1] ; National Natural Science Foundation of China[NSFC 11801547] ; National Natural Science Foundation of China[NSFC 11688101]
WOS Research AreaMathematics
WOS SubjectMathematics, Applied ; Mathematics
WOS IDWOS:000475756300003
PublisherINDEPENDENT UNIV MOSCOW-IUM
Citation statistics
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/35219
Collection数学所
Corresponding AuthorBufetov, Alexander, I
Affiliation1.Aix Marseille Univ, Cent Marseille, CNRS, Inst Math Marseille,UMR7373, 39 Rue F Joliot Curie, F-13453 Marseille, France
2.RAS, Steklov Math Inst, Moscow, Russia
3.Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg 191023, Russia
4.St Petersburg State Univ, St Petersburg, Russia
5.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
Recommended Citation
GB/T 7714
Bufetov, Alexander, I,Nikitin, Pavel P.,Qiu, Yanqi. ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES[J]. MOSCOW MATHEMATICAL JOURNAL,2019,19(2):217-274.
APA Bufetov, Alexander, I,Nikitin, Pavel P.,&Qiu, Yanqi.(2019).ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES.MOSCOW MATHEMATICAL JOURNAL,19(2),217-274.
MLA Bufetov, Alexander, I,et al."ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES".MOSCOW MATHEMATICAL JOURNAL 19.2(2019):217-274.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Bufetov, Alexander, I]'s Articles
[Nikitin, Pavel P.]'s Articles
[Qiu, Yanqi]'s Articles
Baidu academic
Similar articles in Baidu academic
[Bufetov, Alexander, I]'s Articles
[Nikitin, Pavel P.]'s Articles
[Qiu, Yanqi]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Bufetov, Alexander, I]'s Articles
[Nikitin, Pavel P.]'s Articles
[Qiu, Yanqi]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.